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ABSTRACT

Our goal was to measure the distribution of radiation S as a
function of its angular coo?dinatesa, B and its wavelength A. We
first measured S(o), i.e. the distribution of radiation as a function
of one angular coordinate. From this we learned how critical the
various parameters of our instrument, such as collimation and the
gratings' substrate flatness, were to its successful operation.

These investigations led to the design of new interferometric test
instruments which include an autocollimator, and a lateral and radial
shearing interferometer. Finally a theoretical study of an instru-

ment to measure S(o,B,A) was accomplished.
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FOREWARD

In 1836 H. F. Talbot discovered that images of a grating illumi-
nated with a point source of light were formed without the aid of any
optical devices. Although theoretical studies have been made of this
phenomenon and of the intermediate images that are formed ("Fresnel
images") it has not been fully exploited for the design of high-quality,
low-cost optical instruments. This report is concerned with the proper
modifications of this effect. Two new shearing interferometers, an
autocollimator, a Fourier analyzer and a spectrometric imager using this
effect are developed in this report.

Following an introduction and a brief review of the pertinent
details of the Talbot phenomenon theory, the Talbot shearing interfero-
meters are discussed. The theory and experimental evidence are presented.
Multiple-shearing interferences‘are obtained that can be reduced to
triple-shearing or double-shearing interferences by the addition of simple
spatial filtering. When the shear is less than the width of the details
in the object, these interferences become either the second or first
derivative of the object under test, respectively. Either lateral or
constant radial shear can be introduced by choosing Ronchi rulings or
circular gratings. Thus both lateral and radial derivatives are easily
obtained. If white light is used as a source, color fringes or high
contrast are observed.

The spectrometric imager follows and is an instrument that encodes
the brightness distribution of a scene S as a function of wavelength and
angular position coordinates (a,R) by a single detector which responds to

the light intensity as two gratings are displaced. The situation for
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encoding only the wavelength information S(\) conceived by Lohmann with
spectra by Klages is briefly reviewed. A Fourier analyzer is discussed.
The function to be analyzed is cut out of an opaque material and is
incoherently and uniformly illuminated. The detected signal is its cosine
transformation as a function of grating separation. This is followed by
the theory for an instrument that encodes only S(a,B). The encoding for
a restricted region of (o,B) is a cosine transformation, and therefore
another cosine transformation recovers the information. Since only one
point in the two dimensional Fourier cosine transformation space can be
encoded at any given time, the Fourier space must be sampled. Three
different scanning systems are explored. Limitations of our instrument
in encoding S(a,B,A) are discussed. The additional modification required
to encode this most general situation and the attendant loss of light
energy at the detector are also discussed.

A separate chapter concludes the body of the report by summarizing
the work and offering remarks for future projects. Three papers are
included in the report. Two of them are our early results on the shearing
interferometers and contain interferograms of good quality. The third
paper is about an autocollimator ﬁhich is a special case of the Talbot
interferometer. Here both grating rulings are aligned in the same
direction, and moiré fringes are observed in the image plane whenever
the two grating periods are unequal. These fringes indicate that a
spherical wave is at the first grating. By adjusting the collimating
lens, this spherical wave can be made plane through observing the moiré
fringes at the second grating. A uniformly bright (or dark) field indi-
cates that the system is aligned within the accuracy limitations of the

interferometer.

vii



CHAPTER I

INTRODUCTION

Avrather remarkable optical phenomenon was reported by H. F.
Talbotl ovér one hundred and thirty years ago. It is the goal of this
report to use this effect for several new metrological purposes.

Briefly stated, this phenomenon that we call the "Talbot effect"
concerns the formation of images when a certain class of structures like
a grating are illuminated by spatially coherent light. 1In other words,
the Talbot effect is a method for forming images of these structures
without any lenses or mirrors, simply by illuminating them with spa-
tially coherent light. The first object was a grating of equidistant
lines, and subsequent research has enlarged the class of objects to
include a numbér of periodic structuresz. Montgomery3 determined the
total class'of objects, and showed that the two dimensional Fourier
transform of these self-imaging objects could exist only on a set of
concentric circles. The self-images repeat themselves at intervals
deduced by Lord Rayleigh4 as 2d2/l (where d is the grating period, A
is the wavelength of the light) for plane wave illumination. Therefore,
longer wavelength illumination produces closer spaced self-images than
shorter wavelengths. Therefore,when white light is used as a source,
color images of high contrast are observed.

The wavelength dependency of the intervals between self-images
was used to develop a spectrometer by A. Lohmanns. The recorded inter-
ferogram is a cosine transformation of the spectrum and is the first

grating spectrometer that records all wavelengths in the spectrum




simultaneously6. The Talbot effect ﬁas been employed in connection
with masks for integrated circuits that contain hundreds of identical
shapes in a periodic array7. When a section of the mask is damaged
through mishandling or wear, the original péttern can be reconstructed
by illuminating the damaged mask with a p;ane monochromatic wave. In a
distant self-image plane the restored image appears. Thus far only
simple geometries have been successfully tested. The high contrast
color self-images can be used artistically. By placing a second grating
in the field and slightly tilting it, moire fringes are formed between
the self-images and the grating. The location of the grating selects
the color combination. A third grating adds more fringe patterns and
additional colors. A similar setup was used by E. Lau in the design of
table clothss.

The useful aspects of the Talbot effect in the design of new
instruments follow. Poor quality gratings can be used because the self-
images emphasize the periodic structure of the grating, and therefore
local defects in it are minimized. Furthermore the location of the self-
images are at intervals that are a function of the grating period, and
misalignment of the grating reduces the effective grating period by a
cosine factor. In addition the self-images occur over distances that
are easily managed by the experimenter. The self-image interval for
d = 0.lmm and A = 2/3 x lO_Bmm is 30 mm. Consequently_éositioning of
components can be done without the aid of micropositioners.

Although some work has been done using the Talbot effect, it has
not been fully exploited in the design of rugged, high quality, low cost

instruments. This report is concerned with the proper modification




of this effect in the design of such instruments. Two new shearing
interferometers, an autocollimator, a Fourier analyzer, an image scanner
and a spectrometric imager are developed. These instruments are dis-
cussed within these pages. Each chapter has appropriate introductory
remarks. Chapter II is a review of the Talbot effect. Only relevant
aspects of the theory are covered. Both the lateral and constant radial
shearing interferometers are discussed in Chapter III. Ronchi rulings
give a lateral shear, and circular gratings produce a constant radial
shear. Therefore either one dimensional or axially symmetric optical
systems can be tested. With simple spatial filters either double or
triple shearing interferences are obtained that become the first or
second derivative respectively when the shear is less than the width of
the tiniest details in the test object. The theory with experimental
evidence is presented. In Paper 1 and Paper 2 are reprints of our pre-
liminary work with these interferometers and contain interferograms of
high quality. Chapter IV contains theoretical studies of the Fourier
analyzer, the image scanner and the spectrometric imager. The brightness
distribution S as a function of its angular coordinates a,f and its
wavelength A is encoded onto a single detector by the spectrometric
imager. The image scanner encodes only S(a,B8), and the Fourier analyzer
is a special case of the image scanner. Chapter V concerns our con-
clusions about these instruments and remarks about future work. The
autocollimator is covered in Paper 3.

These instruments based on the Talbot effect have a lot in common
and yet differ in ways that allow special measurements to be made. All of

the instruments use two gratings,Gl and G2, where self-images of




the first grating are detected by a second. But they differ in the way
that the optical light signal is processed. Both the shearing inter-
ferometers and autocollimator use an area detector like the eye or photo-
graphic film,and their gratings are kept at a fixed distance, whereas

the remaining instruments use a combination of grating motions to mod-
ulate the light intensity onto a single detector. The motions used are
moving G2 laterally and longitudinally and rotating both gratings in
unison. The latter motion is required when two dimensional spatial
information is desired. The lateral motion makes it possible to select
either one of two terms in the point spread response that contains the
wavelength or spatial information. A compilation of the physical aspects
of our Talbot instruments follow with a summary in Table I. The spec-
trometer is added to complete the list, and diagrams of the instruments
can be found in the appropriate chapters.

Shearing interferometer: Collimated light impinges upon Gl to
form the self-images. A second grating is situated in one of the self-
image planes. Placing a test object between the two ératings distorts
the self-images at G2. The moiré fringes formed by the distorted self-
images and G2 are observed by an area detector.

Autocollimator: This instrument is identical to the above; the
test object is the curvature of the wavefront at Gl caused by defocusing
the collimator lens. The moiré fringes measure the wavefront curvature
which is related to the amount of defocusing.

Spectrometer: The source to be measured is collimated and self-
images of Gl are formed. G2 moves laterally and the instrument's

response is filtered for the (oxA/d) dependent term with a = 0. The




light is collected onto a single detector which records the light intens-—
ity as G2 is moved longitudinally.

Fourier Analyzer: A function mask is cut out of opaque material,
incoherently illuminated and placed in the front focal plane of the
collimating lens. G2 is moved laterally so that theo-dependent term of
the response is selected. The light is collected onto a single detector,
and the intensity is recorded as G2 moves longitudinally.

Image scanner: The source to be measured is collimated and waves
emitted from the collimator impinge upon Gl. G2 is moved laterally so
that the a-dependent term can be selected from the point spread response.
The light is collected, and the intensity is recorded as a function of
the grating separation. In addition both gratings are rotated so that
tﬁé two dimensional scene can be scanned.

Spectrometric imager: This instrument has the same setup as the
image scanner except that the (o + A/d) term is selected.

The foregoing has been summarized in Table I. The terms x(t),
z(t) and ¢ (t) refer to the grating motioms: G2 lateral, G2 longitudinal
and both gratings rotational. The o and (o + A/d) columns stand for the
selected term of the point spread response. The type of detector used

is indicated by the area and single columns.




TABLE I. A Comparison of the Talbot Instruments

Instruments
Autocollimator

Shearing Intérferometer
Spectrometer

Fourier Analyzer

Image Scanner

Spectrometric Imager

area single

XX

XX

xx marks the features found in

1. H. F. Talbot, Phil.Mag. 9, 401 (1836).

XX

XX

XX

XX

x(t)

XX
XX
XX

XX

the instrument,

References for Chapter I

z(t)

XX
XX
XX

XX

¢ (t)

XX

XX

o

atr/d

XX

XX

2. J. Cowley and A. Moodie, Pfoc. Phys Soc. (London) B70, 486, 497,
505 (1957); B76, 378 (1960).

3. W. D. Montgomery, J. Opt. Soc. Amer. 57, 772 (1967).

4. Lord Rayleigh, Phil. Mag. 11, 196 (1881).

5. A. Lohmann, Proc. ICO Conf. Opt. Instr.,, ed K. J. Habbell (London,
1961) p. 58.

6. P. Felgett, J. De Phys. Collog C2, 169 (1967).

.7. H. Dammann, G. Groh and M. Kock, Appl. Opt. 10, 1454 (1971).
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CHAPTER TII

REVIEW OF THE TALBOT EFFECT

INTRODUCTION

In 1836 H. F. Talbot, observing with a powerful lens the region
behind a grating placed ten to twenty feet from a radiant point of in-
tense solar light, discovered a series of images of the grating. In
other words, the diffracted light formed images of the grating without
the use of any optical components. We call these images "Talbot images,"
which are also known in the literature as 'self images'" and "Fourier
images."2’3’4

Lord Rayleigh,5 in 1881, deduced that for a grating of period d,
illuminated by a monochromatic plane wave of wavelength ), a series of
Talbot images are formed at intervals given by Zp = A (1- V1=3Z/d%) =
2d2/)x when A/d << 1. Recently, a theoretical treatment with experimental
evidence of Talbot images for structures other than a linear grating was
reported by Cowley and Moodie.2 The existence of many other images
which occur in the region of Fresnel diffraction was also discussed.
These "Fresnel images' have been theoretically explained by Winthrop and
Worthington.3 The complete set of objects that self-image in a plane
when illuminated by a plane monochromatic wave was derived by Montgomery.
Only those aspects of the theory that are required to understand this

dissertation will be presented in the following section.

Theory

Let a monochromatic plane wave be incident upon a grating as shown
in figure 1. We chose the mathematically simple grating transmission

function g(x) = 1 + cos(2mx/d), so that the relevant parts of the theory




eye

”%_".

Figure 1. A grating illuminated with a plane wave. The observer sees
the "Talbot image'.

will be enhanced. The complex wavefield just behind the grating is given
by the product of the grating transmission function and the wavefield
just prior to the grating. The complex wavefield behind the grating can
be described by the Raleigh-Sommerfield-Debye formulation for diffraction

of plane waves. We have

u(x,y,z) = ﬁ(v,u;0+) exp {ZWi[é-Vl—K2(V2+uz) + Vx+My]}dVdu
where

~ + + .

i(v,u30') = u(x,y,0 ) exp{—Zn1(vx+uy)}dxdy,

and the integrations are over the interval (-, + ®) in this chapter.
Performing the Fourier integration yields

-~ +

G(v,p;0°) = 8(v,u) + 1/2 6(v=-1/2,n) + 1/2 S(v+1/2,1),

and placing this into our diffraction formula yields

u(x,y,z) = exp{ikz} + cos(2mx/d) exp{ikz Vl-kz/dz} @D




This equation can be interpreted as the sum of two interfering
waves traveling in the +z direction. The first wave is an ordinary
plane wave with wavelength A and phase velocity c, and the latter wave
has a Qavelength Am = A/V1-xZ2/d7% and phase vélocity Vi = c/VI-AZ[dZ. We
can understand the Talbot effect as the interference between an ordinary
plane wave and a modulated plane wave. Since their phase velocities are
different, they must travel a distance Zg before they are again in phase.

We can rewrite equation (1) in a waybthat will best illustrate
this explanation:

u(x,y,z) = exp{ikz} [l + cos(2mx/d) exp{ikz(l - /I:X7732)}]

The overall phase factor exp {ikz} can be eliminated from further con-

sideration since the final observed quantity is intensity. Imageé of

the grating will occur whenever the exponential factor of the modulated

wave is 1; and this occurs at multiples of the distance
zp = M (1 - VI-AZ/d%)s 2d2%/) for A/d << 1.
A typical example for Zo is: d = 0.1 mm, » = 2/3 x 10"3 mm; zp = 30 mm.

Since the distance for Talbot imaging is A dependent, this effect can be
used to make a spectrometer. ’

In practice gratings are of limited size, and the diffracted
orders "walk-off" the zeroth order as shown in figure 2. The Talbot
effect occurs within the region where the diffracted orders interfere.
These waves overlap in the shaded region of figure 2, which forms a
wedge whose width decreases to zero at ZMAX = Bd/2x, where B is the

grating width, and ZMAX is the maximum distance from the grating over

which the Talbot effect occurs.




y

zero

|

Figure 2. The first diffracted orders "walkoff" the zeroth order with
increasing z. The maximum distance for the Talbot effect
is marked Zy-
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CHAPTER III

THE TALBOT SHEARING INTERFEROMETERS
INTRODUCTION

Shearing interferometry has beenvused to test optical instruments
and components, to study physico-chemical phenomena in liquids, and to
evaluate optical transfer functions, i.e. the contrast of an image»
plotted against its spatial frequency.l In this type of interferometry
the wavefront under test is duplicated and displaced. They are then
made to interfere with each other, yielding a compérison of the wave-
front with a shéared image of itself. These interferometers typically
use a single beam-dividing element that affords a simplicity over other
interferometers. There are two wa&s of observing the sheared wavefronts.
The first method is to have the shear sufficiently large that each of
the wavefronts interferes with the uniform background of the other. This
is called "total shear" and the fringes observed are lines of equal
optical paths. In the second method the shear is kept smaller than the
width of the details that we wish to observe, and the fringes are pro-
portional to the gradient of the wavefront in the direction of the shear.
This method is known as "differential shear.'" The earliest shearing
interferometer introduced a lateral displacement between the waves,2 and
the most recent class of shearing interferometers cause a constant
radial shift between the wavefronts.3 In the former case we obtain the
lateral gradient of the wavefront, and in the latter the radial gradient
is observed. It is desirable to have both types of interferometers
since geometries that require testing are often either one-dimensional

or circular.
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Recently, a new shearing interférometer based on the Talbot effect
was introduced.4 The basic setup is shown in fig., 4. An image of the
grating is formed at multiples of a distance Zp = 2d2/A>(where d is the
grating period) behind the grating that has been illuminated by a plane
monochromatic wave. The space between the tw§ gratings is empty. In
other words, the Talbot effect is a method of forming images of a peri-
odic object without any lenses or mirrors. When properly modified, the
Talbot effect affords a unique method for quantitatively observing phase
objects through the use of two gratings, one of which is self-imaged
onto the second. Since the grating shears the wavefront in a direction
perpendicular to its rulings, a Ronchi ruling laterally shears the wave-
front and a circular grating gives a constant radial shear to the wave-
front. Therefore, by a suitable choice of gratings, optical instruments
with either one-dimensional or circular geometries can be tested simply.

In this paper the complete theory and experimental evidence for both
types of shearing interferometers will be presented. A complete theory
requires scalar diffraction theory to explain the self-imaging effect,
the spatial filtering capability, and the high-contrast color fringes
that are observed when white light is used as a source. However, a ray
explanation like that of Nishijima and Oster5 will be presented first
to acquaint the reader with the operation of this instrument. The ray
explanation is valid only for distances from the first grating that are
about one-eight of the Talbot distance zp, which greatly limits the sensi-
tivity by orders of magnitude.6 Thus the ray explanation will be fol-
lowed by the wave theory in order to understand the full capabilities

of this instrument.
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A Qualitative Ray Explanation

A Ronchi ruling is illuminated with collimated light as shown in
Figure 3. The diffracted waves are modulated and form "Fresnel Images."
At integer multiples of the distance zTiz_Zdz/A, where d is the grating
period, an image of the Ronchi ruling is formed. If a second grating is
placed at one of these image planes in anti-position te the image, no
light will be transmitted beyond the second grating. Hence a ray that
passes through a slit of the first grating is blocked by the second
grating as shown in Figure 3. A prism of wedge angle o is introduced at
'a distance z from the second grating and normal to the incident rays.

The rays passing through the prism will be bent through an angle €. Thus
the intensity of the light as seen by the observer varies with the angle
€, with peak intensities given by €, = tan ey = (m + 1/2) d/z, and dark
fringes by e, ® tan e = mﬂ/z. The angle € is related to the wedge angle
o under small angle approximation by € = (n - 1)a. The wedge angle o is
for small angles determined by the ratio o & tan o = At/Ax, where At =
prism thickness, Ax = distance from apex. A phase object can be thought
to be made up of prisms, a fact which is often used to explain the action
of a lens, so that for any point (x,y) on the object, the prism angle o
is given by a(x,y) =~ dt(x,y)/8x, which in turn is related to & by e(x,y)
= (n-1) 9t(x,y)/9x. The derivative Sf(x,y)/ay is of no concern here since
the grating bars are parallel to the y-axis,

. Thus ‘a dark fringe structure is obtained whenever e(x,y) meets the
dark fringe conditions. These fringes indicate lines of equal 3t/3x,
which is the x-component of the surface gradient at point (x,y). Where

the lines are close together, the slope 3t/dx changes rapidly. Hence
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the fringe density or fringe frequency is proportional to the x-component
of the curvature 32t/8x2. The maximum detectable curvature is determined
by the minimum detectable fringe separation. In a sense what is observed
is the second derivative of the phase object,

There are two problems of fringe detection. The first occurs when
the fringes become too fine for the eye to resolve them. This is only
a practical limitation and a magnifying glass would extend the sensiti-
vity. But the second problem is more fundamental. The field of view is
finite, say B = Nd, where N is the number of lines in the grafing. For
an object whose curvature is at the minimum detectable sensitivity, its
curvature must be large enough for at least one full (or maybe one-half)
fringe across the field. Hence [(8t/3x)max - (at/ax)min] (-1) = d/2z.

If (at/ax)max is at x = +Nd/2 and (Bt/BX)min is at x = -Nd/2, then

Ot (x+Nd/2,y)/ox - 3t(x-Nd/2,y)dx =~ 32t/5x% Nd.

d/2 _ 1 . . .
Z(a-D)Nd ~ Wz (n-l) The maximum Talbot distance is

given by 2 ax - Nd2/2x. Using this as z in the above equation yields

Hence |d%t/dx?| =

A _ A
(Nd)*(n-1) = B(n-1) °

laZt/ale 2

For example if A = 5 x 10™* mm, n - 1 = 1/2, B = 102 mm, we obtain

|32t/8x2| 2 1077 mm~! = 1/10 km). We note that z . can be increased with

the addition of plane mirrors that are positioned tangent to the zeroth

order beam which effectively increases the grating size due to reflection.
As an example of the system, a perfect thin lens is considered.

The phase of this lens is given by ¢(x,y) = (-m/Af) x? + yz), where f is

the focal length of the lens, and (X,y) its coordinates. The relative

phase of any object is given by ¢(x,y) = (2n/A) (n-1) t(x,y), and there-
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Figure 3. A ray diagram for the lateral shearing interferometer. The

prism is a test object that bends the rays through the slits
of G2.

.\y

ol § " B : spatial
sourc . : ' filter plane

image plane
A y
L2

o

2 MZT

f—

Figure 4. The setup for the Talbot lateral shearing interferometer
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fore t(x,y) = -(x2 + y2)/[2f(n-1)]. Thus 3t(x,y)/9x = -x[(n-1)f], which
when substituted into equation (1) gives e(x,y) = -x/f. This is a
straight line that,when compared with conditions for dark fringes, will
yield equally spaced fringes of fd/z. An imperfect lens will not have
straight equally spaced fringes, and thus its quality can be determined.
It is worth noting that this system likewise tests the collimator objec-

tive and can serve as a good method for testing lenses.
The Lateral Shearing Interferometer

Discussion

In this section a rigorous derivation based on scalar diffraction
theory is presented. The result will be an interpretation of the image
as two, three,or many shifted-object wavefronts, sometimes tilted. Ac-

' as is common

cordingly we will use the terms ''shearing interferometry,'
when two shifted-object wavefronts interact. In generalization thereof
we will introduce the terms "triple shearing interferometry" and 'mul-
tiple shearing interferometry." In some instances these shearing inter-
ferences will represent the first or the second derivative of the object.

The instrument is diagrammed in figure 4. The spatial coherence require-

ment is derived in Appendix 1.

Theory
Consider a monochromatic plane wave incident on grating Gl in the
plane at -z;. The field behind this grating is

o«

u(x,y,-2zy) = e 1k21 E Cne2n1nx/d

T =00

where the periodic grating is considered infinite in extent and of period
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d, and is expressed as a Fourier exponential series; k = 21/ where A =
wavelength of light. Following a line of reasoning like Edgar's,8 the
incideqt plane wave is by action of the grating replaced by a set of
plane wavefronts whose x-direction cosines are n)i/d and whose field

strength is proportional to Cn' The propagating field behind Gl is

-ikZl

{ik[nxA/d + (z;+2) /I-(ax/d)?1}

Cn" e

(n)

u(x,y,z) = e

which just prior to the object plane z = 0- reduces to

u(x,y,0-) = e—ikzlzbn e{ik[nx)\/d + z,/1-(a)/d) ]}

n)
Applying the Kirchhoff boundary conditions to the field as it passes
through the object,'we have
aCx,y,04) = oikzy Z CnuO(X;Y) e{ik[nx)\/d + zl/l—(nA/d)zl}
o (2)
where ug(x,y) is the two-dimensional object transmittance function.

Each of the plane waves is diffracted as it passes through the ob-
ject. At this point, the concept of the angular spectrum is very useful.9
In this formulation the diffraction phenomenon is a multiplicative quad-
ratic phase factor exp[ikz/I:X773717373] in the Fourier domain which in-
creases with the propagation distance z. Let i(v,u; 0+) be the angular

spectrum of equation (2) defined by

G(v,u; 08 = Julx,y, 0 o2 (vrtuy) dxdy

where the integration in this section will be over the interval (-«,«)
when unspecified, and (v,u) are the Fourier spatial frequency components.

The angular spectrum for the plane just preceding G2 (z = 25-) 1is
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p{ikZZVl—Az(v2+uz)}

i(v,u; z =) = 4(v,u; 0+) ex

_ ikz Z ¢ g (v-n/d,n) ikl I-( D7 +
(n)

2,/ TR Z (o2 D) T}

where tg(v,u) is the angular spectrum of the object. The Kirchhoff

boundary conditions are applied to the second grating at z = z,

u(x,y,zot) = u(x,y,zz—)‘§ ! Cmelﬂm ezﬂlmx/d
(m)

where the e™ " factor accounts for the fact that the second grating is
shifted by half a period with respect to Gl. In the Fourier domain this

becomes a convolution which results in

GV, u5 zo4) = e‘lkzlz E c_c_e'™ o (v-(atm)/d,u)

(n) ()
lik{z1V1I-(@A/d)? + z,VI-X2[ (v-m/d)ZHuZ] 1} (3)

The image plane is conjugate to the object plane z = 0. There-
fore, we compute the field virtually back to the z = 0 plane in order
to find the resultant field in the plane of observation, and give the

field a new symbol v(x,y) with v(V,H) as its Fourier spectrum

—ikzo V1N (VIFT DY
vV, 1) = a(V,H; z2+) ol =ikzp VIR (Vo )}

Substituting equation (3) into this and simplifying by using the first
two terms in the Taylor series expansion of the squaré roots in the ex-

ponential terms yields

V(v,n) = Z Z CnCmeiTrm tg (v-(ntm)/d,u)

(n) (m)
e{ik[zz)\zvm/d - z;(0A/d)2 + z,(mr/d)2]}.
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But as explained in the first section, the two gratings are separated

by some multiple M of the Talbot distance z Thus putting z, + z; =

T
M z_ = 2Md2/) into the above equation reduces it to

T
F(v,p) = Z Z cncmei'rrm tig (v-(n+m) /d, 1)

(n) (m)
e{Zﬂi[Azzvm/d—zzk(mz—nz)/2d2]L %)
Taking the Fourier transform of this gives the resultant field in the

image plane.

v(x,y) = Z Z c.Ch ug (xtmz,0/d,y)

(n) (m) _
e{2ni[m/2 + (m+n)222/zT + (n+m)x/d]}.
(5)
Tilted Ronchi Rulings

Thus far our analysis indicates that the system cannot distin-
guish a positive from a negative lens, since it is insensitive to the
sign of the phase derivative. By rotating the grating of Gl, its self-
images will correspondingly rotate, and moiré fringes between G2 and
these self-images will be observed.10 The frequency of the moiré fringes
and their orientation relative to the gratings are dependent upon the
angle a between the grating's lines and upon each grating's frequency. Un-
equal grating frequencies cause rotation of the moiré fringes, a fact
that was exploited in making a sensitive autocollimator (see Papers 3).
In our autocollimator, a diverging wave at Gl causes the self-image to
be magnified, which corresponds to a decrease in its frequency, whereas
a converging wave increases the frequency. 1In both cases the Moire

fringes rotate, but in opposite directions. Thus, by the rotation of

the fringes, the sign of the curvature of the wave at Gl could be deter-
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Figure 5(a). The reciprocal space for calculating the moiré effect
when |v1| > IVZI-

m
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1
Figure 5(b). The reciprocal space for calculating the moiré effect

when |V1| < |v2’.




mined. This phenomenon can be simply understood using a technique by
Rogers .11

Rogers describes a reciprocal space that is like a Fourier space
where vectors in the space describe the frequencies of a grating. Each
vector is weighted by its associated FQurier coefficient. The length of
the vector corresponds to the value of the grating frequency and its
orientation is perpendicular to the grating lines. Our diagram contains
vectors for the self-image of Gl and G2. We consider only the funda-
mental frequency of each grating, since they are the dominant ones in
the Moire effect. The vector difference yields the Moire frequency
vector.

We rotate G1 by =-¢/2 and G2 by +p/2. Let v; be the vector for
the self-images and v, for G2. For a plane wave v; = v, and we have Moire
fringes parallel to the x-axis. When the self-images are minified, as
when Gl is illuminated with converging wave v; > v,, we have the vector
diagram of Fig. 5(a). The Moire vector i has rotated counter-closewise
from its vertical position for v; = v,. On the other hand, with magnified
self-images, v; < v, and the vector diagram of Fig. 5(b) results. In
this case, Yy has rotated clockwise. By choosing to rotate Gl by +p/2
and G2 by -¢/2, the above situations would be reversed with clockwise
rotation of the Moire fringes, indicating a converging and counter—clock-
wise rotation indicating a diverging wavefront.

When test objects are placed in the field, the same results apply.
Yokozeki and Suzuki12 have an expression for the locus of these fringes

for the Talbot interferometer

cos a-1 Z Jg(x,y) d
— 0 X + — + —
sin a sin o 90X sin a
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where o is the gngle between ruling lines defined as positive if G2 is
oriented clockwise to Gl, Z is the object to G2 distance, g(x,y) is the
distortion of the zeroth order diffraction wave at G2 and m is.an integer.
This expression shows that the straight-line Moire fringes are altered

in proportion to the first derivative of the distortion. Tﬁe direction
that the fringes rotate is given by the sign of our derivative. As an
example, consider an ideal negative lens. The partial derivative is
proportional to x, which would increase the value of the slope for the
straight-line function resulting in a counter-clockwise rotation. A
positive lens would decrease this slope, giving the fringes an opposite

rotation.

Filtering

Thus multiple~shearing interferences are observed in the image
plane. 1In ordinary shearing interference only two terms are present,
u(x + AX,y) - u(x,y). In order to reduce the large number of terms of
the double series, we will perform certain spatial filtering operatioms.
The field expressed by equation (4) is found in the spatial plane located
one focal length behind the first lens of the telecentric system. In
order to filter just the n+m =0 or n+ m = 1 term, which we will show
leads to special interferences, we must assume that the shifted spectrums
g (v-(ntm)/d,u) do not overlap. This is so if the bandwidth restriction
of the object ]Av| =1/2d, i.e. Gp(v,u) =0 whénever 'iﬂ >1/2d. 1t can
also be shown that allowing both first orders to pass leads us to the

auto-correlation of uy(x,y).
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a. Zero Order Filtering

The multiple shearing interferences can be simplified by spatial
filtering. Our first consideration is the case of zero order filtering,

n+m=0. Thus eq. (5) reduces to

v(ix,y) = z CmC_~meiTTm up (x+md,y),
(m)

where A = z,)/d is the shear introduced by the grating to the wavefront
under test. If we restrict ourselves to only considering either ampli-
tude or phase modulated gratings that are symmetrical about the origin,
then the Cm‘s are real and Cm = C . Thus we can rewrite the above

~m

equation as

v(x,y) = C%gu“o‘(x,y) + 2 Z (Cm/Co) eiﬂm [uy (xtmd,y) +

m21

uo(x—mA,y)]i.
These multiple-shearing interferences can be simplified to triple-shear-
ing interferences if (Cm/Co)2 terms are all but for the m = 1 term
negligibly small. By using a special grating g(x) = 1 + cos(2mx/d),
triple-shearing interferences would result since Cm = 0 for all m>1.
We now consider the use of an inexpensive Ronchi ruling as a grating.
The Fourier coefficients are Cm = (1/2) sinc(m/2); all even Cm = 0,
where sinc(x) = sin(7x)/7x. With this grating the multiple-shearing
interferences appear as triple-shearing interferences since (Cm/CO)2 =
0 for m > 1. Note that the highest term neglected, n = 3, is just one
ninth of the smallest term that we kept, m = 1. Therefore, our equa-

tion reduces to
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v(x,y) &~ C§lug(x,y) - (C1/Cq)? [ug(x+A,y) + ug(x-A,y)1}
Here we have triple—sheéring interferences in the image plane of the
instrument due to zero order filtering. These triple-shearing inter-
ferences become the second derivative of the wavefront when the shear
is made very small. To show this we expand ugp(x*A,y) by its Taylor ser-

ies, and substitute it into the above equation to yield

v(x,y) =~ uy(x,y) [CF-2C3] - ZCézuép)(x,y) APrpt (6)
p=2

where uép)(x,y) = Bpuo(x,y)/axp. In order to eliminate the unshifted
image from the field of view we must have C% = ZC%. This can be done by
choosing a grating whose mark-to-space ratio is 1.3. If one uses the
Ronchi ruling, this term is still negligible as compared to the second
term of eq. (6). This summation term can be shown to be approximately
the second derivative by using a theorem by Bernstein13 which states
that the derivatives of a bandlimited function are bounded by the maxi-
mum value of the function in the interval. The actual manipulations are
done in Appendix 2, the outcome of which states that the maximum shear
A must be less than one-sixth of the width of the smallest details in the
object in the direction of shear. This in turn determines the distance
zp that the object must be placed before the second grating. For spatial
filtering we require that Av = 1/d, where the most stringent condition
is the equality. This condition is necessary to keep the shifted spec-
trums in the Fourier domain of our telecentric system from overlapping.
Since the shear A = zy\/d < 6x/6 = 1/6Av = d/6, we have z, < d?/6) =
zT/lZ. For a Ronchi ruling of 10 lines/mm, this means that the object

must be placed within 5 mm of the second grating. With such a placement
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of the object and a ruling with mark-to-space ratio of unity, eq. (6)
becomes |

v(x,y) ®(1/20) ug(x,y) - (1/10)(zA/d)? 3%u (x,y)/3x?%,
and with a grating of mark-to-space ratio of 1.3, we obtain

v(x,y) ~ 32uy(x,y)/9x?. Thus the result of zeroth order fil-

tering is the second derivative of the wavefront under test.

b. First Order Filtering

The mathematics for this case follows simply from the previous
section. Here we filter either the n +m =1 or n+ m = -1 term. The
only difference is in the sign of a phase factor, which is unimportant
when detecting the signal. For the n + m = +1, the field in the image

plane becomes

v(x,y) = C0C1e2ﬂi[x/d+z/zT] {ug(x,y) - ug (x+zA/d,y) }.
This surprising result occurs since the even coefficients are zero.
Those terms which contribute under the n + m = 1 condition are Can =
CmCm—l’ implying that for any m # 0, one coefficient will always be even
and hence equal to zero. This is very much like ordinary shearing inter-
ferometry, and we will again show that under a certain condition this is
approximately the derivative of the object. We ignore the phase since
it is the intensity which is observed in the image plane, and deal with
the bracketed terms. The last term is expanded in a Taylor series around

zx/d; combined with ug(x,y) it gives

{...} = Z ugp) (x,y) (z)\/d)p(l/p!) mugl) (x,y) (z)/d) .
=1l

Using the same kind of arguments as in the previous section, this approxi-
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mation is valid if the shift zA/d £ 1/5mAv &~ (1/15)8x. Under the stric-
test condition |Av| = 1/d, this means that the object to G2 distance is

z =< zT/lOw. Therefore, the field in the image plane for first order
filtering under these two conditions, whichever may apply, is given by

v(x,y) =~ (z)/2dn) (Bup(x,y)/9x),

which is essentially the first derivative of the object. We ignore the
multiplicative phase factors since we detect intensity and note that the .
first order filtering gives us essentially the first derivatives of the

object v(x,y) ~ dug(x,y)/dx.

Experiments

The Talbot shearing interferometer was assembled on a laboratory
bench using two Ronchi rulings of 10 lines per mm pitch as gratings.
The second grating was mounted in a holder that could be rotated or
shifted laterally, thereby allowing the gratings to be aligned as desired.
Both a helium-neon laser and a tungsten lamp were used as light sources.
Color fringes of high contrast were obtained with the tungsten lamp but
will not be presented because of the cost of color printing. The output
of a laser was collimated with a 6 micron pinhole énd 250 mm focal length
objective producing a 50 mm beam. The second grating was located in one
of the self-image planes of the first. Objects to be tested were in-
serted between the gratings at a distance from the second grating that
introduced the desired shear. The method of observing interference
fringes was to project the object with its fringe structure onto a screen.
Thus, the fringes overlap the corresponding regions of the object to

which they apply.
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Figure 6. A lens tested in the lateral shearing interferometer showing
fringes of equal phase derivative. Horizontal moiré fringes
appear in the background. '

27




Figure 7(a). Zeroth order filtering of the wavefront that has passed
through the medium heated by a candle flame. The three

candle wicks verify that triple shearing interferences
are observed. '

Figure 7(b). First order filtering of the same object as in (a). Double
shearing interferences are observed.
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The case of a lens was discussed in the opening section. Straight
fringes were predicted for a lens with only quadratic phase terms;
this is shown in Figure 6. One feature not discussed previously is the
addition of the moiré fringes in the background. This is caused by a
slight.rotation of the second grating.with respect to the self-image of
the first. This in turn causes the fringes to rotate.

Heated gases can be studied by this technique since the gas will
have a refractive gradient. A candle flame was placed before Gl. We
used both a uniform dark field and a Moire pattern for our background
while observing the nimbus of the candle. These pictures have been pub-
lished in our earlier publication in Paper 1 figs. 3(a) and 3(b). The
addition of the Moire fringes enhances our ability to observe the fringe
location and gives us the sign of the derivative.

As a demonstration of spatial filtering, this same candle flame
was spatially filtered. The shear was made excessively large so that
triple- and double-shearing interferences could be recognized by counting
the replication of some unique section of the object such as the wick of
the candle. 1In the experiment the candle flame was separated from the
second grating by 90 cﬁ, causing a shear of about 5.6 mm. Zeroth-order
filtering is demonstrated in figure 7(a). Three wicks are clearly ob-
servable indicating triple-shearing interferences. The two sheared wicks
are of lesser contrast than the unsheared ones, as predicted by the theory.
In figure 7(b) we have first-order filtering which produces double-shearing
interferences. These two candle wicks are of equal contrast as expected

from our theory.
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Constant Radial Shearing Interferometer
Discussion

In our previous instrument using Ronchi rulings, the derivative
of a wavefront perpendicular to the ruling lines was displayed by a set
of interference fringes. Imagine that we possess a "flexible" Ronchi
ruling. Bending this flexible grating into a complete circle gives us a
circular grating where the derivative isvstill perpendicular to the lines,
but the lines are now concentric circles. Therefore, we expect that
such a grating in a Talbot interferometer setup would give us the radial
derivative.

In the succeeding sections we will learn that for experimental
reasons the first four periods of a grating are ignored (r < 4a) and that
self-images of a circular grating exist outside of a region defined by a
cone along the optical axis. The radius of this cone increases as we
move farther from the grating (r = Az/a). Combining both restrictions
gives us r < 4a + z/a. This region is excluded when evaluating the
output of ourvnew instrument,

As we will see, the constant radial shearing interferometer, like
the lateral shearing interferometer, gives color fringes of high contrast
when white light is used as a source, and yields double or triple shearing
interferences with spatial filtering. These filtered interferences
become the first and second radial derivative of the wavefront, respec-
tively, when the shear is less than the width of the object details of

interest. Experimental evidence will be presented.
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Definition of a Circular Grating

A circular grating consists of a number of concentric circular
rings on a transparent surface.15 Evéry'other ring is opaque, and the
ratio of opaque rings to transparent ones is chosen by the experimenter
in a fashion that will be discussed under spatial filtering. The trané—

mittance of the grating G(t) shown in Figure 8 is given by

2wimr/a
e

Cn » 4a <r <A

(m)
G(r) =

0 otherwise (7

where the grating is feprésented by its Fourier exponential series, C =
asine ma, r is the radial location of any point on the grating, a is the
periodicity of the structure, oa is the dimension of the éransparent
section; and 2A is the diameter of the grating. Since in the manufacture
of circular gratings the innermost part is not as perfect as the outer-
most parts, the first four periods of the grating have been ignored.

This experimental necessity will turn out to simplify some theoretical

considerations.

A Qualitative Explanation of Self-Imaging with Circular Gratings

Linear gratings are known to self-image, and self-images of
circular gratings have been observed. To intuitively understand why
circular gratings can self-image, consider the outermost part in a sector

of a circular grating. In this region the circular grating is approxi-
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mately like a linear grating. Therefore, it is plausible that a
circular grating, like a linear grating, Qill self-image.

Another way to answer this is to show that the circular grating
belongs to the subset of radially symmetric objects that self-image.
The complete set of self-imaging objects was derived by Montgomery.14
He assumed that a plane monochromatic wave impinged upon the object. He
then solved the wave equation in Cartesian coordinates while asking the
following question: 'What are the necessary and sufficient conditions
that the object must satisfy in order that a faithful image of it be
found in a parallel plane z = zp > 0?" The solution placed restrictions
on the spatial frequency domain for the self-imaging objects. For
objects whose spatial frequency is much less than A~! (Montgomery calls

this "weak imaging") we have

v2 + u2 = 2n/xzq;

= V2n/Azq (8)

Pn
where v and u are the x and y components of the spatial frequency, n is

an integer, A is the wavelength, and zr is the distance for self-imaging.
Hence, the Fourier spectrum of a Talbot object can only exist on a set

of concentric circles whose radii are given by p,. Therefore, the Fourier
spectrum for the subset of objects with radial symmetry that can self-
image will also lie on these concentric circles. By changing Montgomery's
solution to polar coordinates and using the fact thatAour objects have

no angular dependence, the exact solution for this subset can be deter-
mined. We find that the Fourier spectrum, in addition to lying on the
concentric circles, is also independent of the angular coordinate. If

the circular grating belongs to the Talbot set of radially symmetric

objects, then its Fourier spectrum must behave in the same manner. Since
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Figure 9. The basic Talbot constant radial shearing interferometer setup.
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this grating can be expressed as a Fourier series (eq. (7)), we conclude
that its Fourier spectrum is probably confined to equidistant rings
given by on =.m/a. These rings will beiong also to the larger family of
non-equidistant rings of eq. (8) if we select n = 0, 1, 4, 9...m? and
as= ¢§EE7§-or zp = 2a?/). This equation is the same as the original
Talet formula for linear gratings. Hence we have shown qualitatively

that circular gratings are a subset of the self-imaging objects.
Theory
a. General

The Talbot interferometer consists of two identical circular
gratings Gl and G2 separated by a distance such that G2 lies in one df
the negative self-image planes of Gl (see Figure 9). For the position
of G2 we choose a negative self-image, midway between self-image planes,
so that differences (and not sums) in the object will be observed. Or
we obtain these differences by replacing G2 with a negative of Gl. The
second grating is now placed in one of the self-image planes of the
first. Wevalso use a plane in which the self-image is sharp so that our
fringes will have their highest contrast. The gratings are aligned with
their centers coaxial to the beam direction. Therefore in the absence
of an object under test a uniform dark field is observed behind G2.
Between the two gratings at a distance z, from G2, a transparent object
is inserted. An observer focuses his eye on the object through the
second grating so that the fringes overlap the regions to which they
apply. Although a white light source may be used, we will limit our

theoretical considerations to a monochromatic plane wave. The deriva-
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tion of our formulas is contained in the next section,

A monochromatic plane wave impinges upon the circular grgting Gl
and is diffracted. The Huygens-Fresnel-Kirchhoff equation16 describes
the field behind G1 and can be solved by the method of stationary phase%7
The solution is not valid in the inner cone of diffraction defined by
‘r < Az'/a (see Fig. 10), where we have assumed that for experimental
reasons the first four periods of the grating are ignored. A phenomeno-
logical justification for excluding this region from further consideration
in the instrument lies in the nature of the Talbot effect. We recognize
that outwardly diffracted rays form divergent conical wavefronts and in-
wardly diffracted rays form convergent conicél wavefronts. The inter-
ference between a plane wave, a divergent conical wave and a convefgent
conical wave is utilized for the circular Talbot effect. These three
waves overlap in the shaded areas of Fig. 11, and form rings around the
z-axis with a ring width decreasing to zero at z = aA/2\. The inner cone
(cross-hatched region) is one of the zones that does not belong to the
ring domain. This region is to be ignored in evaluating the output of
the instrument and is usually a small fraction of the usuable field.

Ignoring the first four periods of the gfating is not serious
since it is only a small portion of the total grating area. We could
actually block off this region, 0 < r < 4a, thereby avoiding contribu-
tions from this mathematically unmanageable area. But we did not do so
since we know that light from that small portion will be mostly only in
the inner cone, which we will neglect when evaluating the output.

The result of our analysis in the next section gives the output

of the instrument, v(r,p), as

35




——t —— e — ©
"
~N

dimensions illustrating the inner

Figure 10. A diagram in two and three
ccccc

G]
!
i
!
'

N ‘;” vV‘V
- =\ a}mmm'o" ‘.‘.9:,0’0‘0

\\ “““""w»m ww o

]
L———————J\avﬂ?)\

11. A two dimensional drawing of the propagation of the first
diffracted orders. The Talbot effect occurs only within the

ross~hatched regions.

Figure

36




V(I‘,‘P) ~ ZZ Cm Cn eim e2"i(m+n)r/a uO(r - mA,(p)\, (9)
(m) (n)

where A é_xzz/a, ug(r) is the object's transmittance function, and

eiTrm is a consequence of placing G2 in a negative Talbot image. This
equation contains both exponential Fourier series of Gl and G2, and
shows that the complex amplitude of the object is shifted radially by
multiples of A. The amount of shear depends upon the distance that the
' object is placed from the second grating (z;) as well as the angle of
the diffracted orders (A/a).

It is argued in the next section that further simplification of
this equation can be achieved by observing that our Fourier coefficients
decrease by 1/m and that terms associated with high frequencies are
decreased by whatever observational method used. Furthermore C2, Cy,...

= 0 if we use square grating grooves. The result of these approximations

gives us
v(r,p) ~ Co2{uy(r,%) “_(Cl/Co)2 [ug(r + 4,9) + ug(r - A,9)]1}.

As with the case of linear gratings the mark-to-space ratio is

under the control of the experimenter, who can choose (Cl/CO)2 =1/2

(i.e. mark-to-space ratio of 1.3), so that v(r, @) becomes
1
v(r,®) ~ ug(r,9) - Fluglr + 4,9) + uglr - 4,9)].

When the radial shear is made smaller than the width of the object

details this equation is essentially the second radial derivative of

the object,

v(r,CP) ~ azuO(rs(P)/al_'z-
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b. Analysis

The Talbot interferometer with circular gratings is sketched in
Figure 9, which shows all the appropriate dimensions and symbols. A
plane monochromatic wave impinges on Gl, and the complex amplitude of

the wavefield immediately behind Gl is
u(r,z;%) = exp(ikz;) G(r),

where G(r) is the transmission function of the circular grating given

earlier. We will ignore all constant multiplicative phase factors in

this derivation since the final observed quantity will be intensity.
Beyond Gl we have Fresnel diffraction from our propagating wave

field that is described by the Huygens-Fresnel-Kirchhoff integral,

o P27

u(r',zl+) exp{in[r? + r'? -

u(r,9,2) ~ 35

0.0 2rr'cos(p - @')1/xz'} r'dr'dy’

where (r, ®) and (r',p') are polar coordinates in plane z and zl+

respectively, z'

= z - z1, and the approximation sign is to remind us
that we have used the Fresnel approximations and that the constant
multiplicative phase factors have been dropped.

Integrating over @', substituting G(r) for u(r,zT) into the
remaining integral and then interchanging summation and integration
order we have

A
u(r,z) =~ %E" E Cm.la r' Jg(2mrr'/Az'")
4a

(m)
exp{in[2rm/a + (r'? + r2)/xz']} dr'.

The method of stationary phase that solves integrals of this

type cannot be applied since the Bessel function oscillates too wildly
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over the region of stationarity to be approximated by a constant. By
using the trigonometric approximation for the Bessel function we can
place the oscillating parts into the phase term, leaving us with a

slowly varying function. The approximation is

Jo(x) -~ /27}§'cos(x - 7n/4); x > 25,
and therefore
r' Jg(2mrr'/az') ~ _/X;T;T7;' {exp im[2rr'/Az' - 1/4]
+ exp —in[2rr'/rz' - 1/4]}
if 2nrr'/az' > 25, or r > 4)xz'/r'. "
Recall that we were to ignore the first four periods of the
grating for experimental convenience since the innermost parts of a
circular grating are more difficult to ménufacture than the outer parts.
The additional value to this exclusion is that the factor VAz'r'/r
will be a slowly varying function for r' > 4a and that therefore the
method of stationary phase is applicable. We conclude that the Bessel
approximation is good if r > Az'/a. This means that we exclude from our
consideration in the instrument a region defined by a cone about the
z-axis whose angle with the axis is equal to the angle of the first
diffracted order A/a. Using this approximation in our equation for the
field at z we obtain

A

1_\2 '

u(r,z) =~ %—E ij Viz'r'/r {exp iﬂl:-gl)\—z_f)_+ll-;_+—2—tal:_r—;|
(m) 4a ‘

C[@4)?2 1 2mr' } '
+ exp im {—-———-——)\z, -7 + - dr

This equation consists of two parts; the first part accounts for

contributions to a point P in the plane z from the grating for r' < 0
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giving us a path difference of (r - r') while the second part consists
of contributions for r' < 0 that give a path difference (r + r'). Figure
12 shows these two contributions. The method of stationary phase is
applied to the integral.

The point of statiomarity for the first part is ry' = r - miz'/a.
We wish to know the complex wave field at P that lies in plane z at a

distance r from the optical axis. But r must lie within the regions

where self-imaging interferences occur (see Fig. 11). Therefore, not all

diffracted orders m will contribute to the integral. 1In Figure 13 we
have plotted the stationary point as it falls in the r - z plane for
positive values of m. It is apparent from this drawing that orders

m + 1 and greater will fall within the shaded region in the plane 2
where no self-imaging occurs. Therefore this diagram helps us to deter-
mine the positive diffracted orders < m that place ry' within the
interval of integration (4a, A). 1In like manner we can determine the

negative diffracted orders. The results of our computation give us
2 < [(A - 4a)a/aA ] + [ml) = (N - 4)zp/2(1 + |m|); A = Na

where zr = 2a2/) is the self-imaging distance and N is the number of
lines in the grating.

When z is a small fraction of (N/2 - 2)zp then many orders of m
contribute. The strength of the various orders is proportional to the
Fourier coefficients. As we have stated earlier, only the zeroth and two

first orders are significant. In this case z < Nzp/4 - zp & Aa/2), as

stated earlier. We will carry all the orders in our computation and take

only those into account that lie within the instrument's operating range

when evaluating the output.
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A diagram illustrating the contributions to the point P(r, ¢)

Figure 12.
from regions r < 0 and r > 0 in the grating.
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A plot of the stationarity point for that region of the

Figure 13.
grating that lies above the x-axis (r - r").
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Applying the method of stationary phase to the first part gives

us

ul(r,z) 1] Z Cp /1 - (mAz Yra) e-i‘Tr)\Z'(m/a)z e2-nimr/a’
(m)

where uj(r,z) is the contribution due to the first part of the integral.

- The point of stationarity for the second part of the integral is
ro' = -r -miz'/a. For m 2 0, the stationary point lies outside of the
region of integration (4a, A), and therefore does not contribute to the
integral. For m = -1, the stationarity lies inside the inner cone that
we are excluding from our instrument in order that our approximation be
valid. The remaining values of m (m < ~1) do not significantly contri-
bute to the integral since this contribution is multiplied by the associ-
ated Fourier coefficients which are decreasing by 1/m, or by (1/m)2 in
intensity. Thus the contribution of this second part to the integral is

negligible in comparison with the first part,and therefore our field

u(r,z) is given by the computation for u;(r, z)

u(r,z) o~ ul(r,z)

=~ Z Cp V1 - (mrzYra) e"i.Tr)‘Z'(l?ﬂ/c':l)2 e21Timr/a_
(m)

In the plane just preceding the object (z = 07), the field is

u(r,07) ~ :E:: Cp V1 + (mAz,/ra) eim‘?'l(m/a)2 e2nimr/a,
(m)

and just behind the object we have

) u(r,¢,0+) = u(rso_) Uo(r,¢),

where ug(r,9) is the complex amplitude of our object that we want to

test. In the region beyond the lens the propagating wave field is
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computed again by use of the Huygen—Fresnel-Kirchhoff formulation,
fu (z)
u(r,9,z) -~ u(r,ﬁo,O )
JE, (2)

exp{in[r? + r'2 - 2rr'cos(p - w')][kz}
r'dr'de',
where we limit the integration to the self-image field, fu(z) = A - \z/a,
and fg(z) = 4a + Az/a. We expand our test object ug(r,p) in a Fourier

exponential series
ug(r,9) = E up () e,

(p)

since any object is periodic in ¢. Placing this into our integral and

integrating over @', we have

u(r,@,2) ~ ——ZZ Jin(/a)%z) _ip(@-7/2)

(m) (p)
£.(2)
r'/1 + mizj/r'a Jp(2ﬂrr'/kz) up(r')

fq(2)
exp{in[(xr2 + r'?)/xz + (2mr'/a)]}

In order to solve this by the method of stationary phase we
approximate the Bessel function as before and again find that we must
ignore the inner cone. Since this new inner cone lies within the inner
cone of the grating Gl, no further restrictions are required in the

theory of the instrument. Hence,

mr' V1 + miz)/r'a Jp(2ﬂrr'/kz) ~

Az/x vr' + mizy/a cos[2mrr'/Az - w/4 - pr/2],
where r > Mz/a and r' 2 4a as before.

Let the cosine term be represented by its exponential equivalence,
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and our field equation becomes

eiﬂ(m/a)2A21 eip(¢'ﬂ/2)
. m :

(m) (p)
fu(z)

u(r,p,z) ~ V1/Xzr ZC

/r' + miz;/a
fg(z)

{exp in[(r' - r)?/kz + 1/4 + p/2 + 2mr'/a] +

exp in[(r' + 1r)2/Az - 1/4 - p/2 + 2mr'/a]} dr'

The second part is approximately zero as before, and the first part

gives us

u(r,p,z) ~ ZZ Cm e_iﬂ(m/a)z}‘(z_zl) V1l - mA(z - z)/ra
m) (p)
up(r - mrz/a) e

ip® eZFimr/a.

Note that our test object is duplicated and shifted by multiples
of Az/a. The field just prior to the second grating is obtained by

setting z = z,. The above equation becomes

u(r,9,z7) ~ :E:: Cp e—iﬂ(m/a)zk(zz—zl) V1 - m\(zy - z1)/ra
(m)

up(r - mAzp/a,p) e21r1mr/a

where we have used uy(r,p) = E up(r) eipw.
(r)

The field just behind the second grating is

u(r,tp,zz"') = u(r,q’,zz_) G(r) =~ ZZ Cm Cnl/l - mA(zz—zl)/ra

) (m) (n)
e—iﬂk(m/a) (z9-27) g

o(x - mzy/a,9) e21T1(m+n)r/a

. (10)

For maximum contrast, we choose zy - z] = Maz/k, where M. is an integer.

Furthermore, since we want to see differences (not sums) in object
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detail, we choose that M should be an odd integer. We have exp iﬂ)\(m/a)2
(zyg - 2z,) = exp imm, which gives us the necessary negative sign for odd
integers. The full significance of this is deferred until the spatial

filtering section. With this distance our equation becomes
u(rJP,Z:;_f) ~

ZZCm Cn eiﬂm eZﬂi(m+n)r/a Y1 + mMa/r wugy(r - mizy/a,9).
(m) (n)

This equation contains both exponential Fourier series of Gl and
G2, and shows that the complex amplitude of the field is shifted radially
by multiples of Azp/a. The amount of shear depends upon the distance
that the object is placed from the second grating as well as the angle
of the diffracted orders. The square root term accounts for the increase
or decrease in the size of the object due to either.

To simplify our mathematical manipulations we would like to work

in the area where v1 * Ma/r ~ 1 + Ma/2r & 1. This means that Ma/2r << 1

or r >> Ma/2. Recall from eq. (10) that this term is V1 = A(zy - 2z1)/ra.
Therefore, r >> A (2, - z1)/2a. This states that r must be greater than
a cone which lies within the inner cone that we are already ignoring for

aforementioned reasons. Thus the square root term is close to 1

for the region outside the inner cone. Thus our equation simpli-
fies to
V(I',(P) E u(r:(P’ZZ+)
- § : E ¢, Cy i e2ﬂ1(m+n)r/a ug(r - mb,p), (11)
(m) (n)

where A = Azp/a is the shear introduced, and v(r,p) is a new symbol to

indicate the observed field.
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The only significant terms of this equation are for m = -1,0,+1.
Our Fourier coefficients decrease by a factor 1/m. And the next signi-
ficant coefficient C3 (C; = 0) is ome-third that of C;. Since our
Fourier coefficients are in pairs, we can compare C3Cy, which is the
next largest term that we can ignore, with Clz, which is the smallest
term that we will keep, and see that the term that we will throw away is
less than one-~half that of the smallest term we keep. Furthermore this
n=0, m=3 term contains fairly high spatial frequencies as evidenced
by the term exp 2wi3r/a. These high frequencies will be further reduced
in contrast by whatever observational method is used: eye, camera, or
film. A detailed justification of this statement is involved since we
would have to consider the spatial frequency spectrum of the intensity

(after a modulus square operation). Under ‘these assumptions our equation

reduces to

v(r,®) ~ Cg2 ug(r,9) = C;%{up(x+4,9) + ug(r-a,9)}

+ CyC; cos(2mr/a) up(r,e)

- ug (r+4,9) {Clz e—éwlr/a + CoCy e_2ﬂlr/a}

C12 e41T1r/a + e2ﬂ1r/a}

- uo(r—A,tp) { COC1

As we have just stated, the terms with the exponential quantities contain
very high frequencies and the contrast of these terms will be attenuated
or even eliminated by the observational method as with a grating with a
period too fine for the eye to resolve. 'Therefore,

v(r,p) ~ CQZ ug(r,9) - C12 ug(r+a,9) + ug(r-4,9) .

If (CI/CO)2 = 1/2, then we have

v(r,p) ~ Coz{uo(r,w) - 1/2[ug(x+2,9) + ug(r-A,9)1},
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and this equation is approximately the second radial derivative when the

shear is smaller than the object details of interest. Hence

v(r,p) ~ 032uy(r,p)/dr?.

20, = 1/2 we choose a = 0.44 or a mark-

To obtain (Cl/Co)2 = sinc
to-space ratio of 1.3. In conclusion, we see that the output of the
Talbot interferometer with circular gratings is triple shearing inter-
ferences. These triple shearing interferences become the second deriva-
tive when the shear is made smaller than the object details. The shear

in turm is proportional to the distance that the object under test is

placed from the second grating.

Shifted Circular Gratings

In this technique the second grating which 1ies-in one of the
self-image planes is shiftedllaterally a distance s from the self-image.
Thus the rings of equal diameter for G2 and the self-image overlap on
the perpendicular bisector of the line joining their centers. A phase
object inserted between the gratings a distance z from G2 causes the
rays passing through it to bend by an angle o (see Figure 14(a)). Thus
the rings of the self-image are distorted and the overlapping rings will
deviate from the perpendicular bisector as in Figure 14(b). We will
generalize Lau's Dupligramm—method18 from Fresnel Zone Plate rings to

equidistant rings. The deviation will be shown to measure the aberration
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Figure 14(a). A ray diagram Figure 14(b). The two circular gratings are

illustrating how an object shifted with respect to each other causing

bends the rays in a circular moiré fringes. When one circular grating is

Talbot interferometer. deformed then the distance from the y-axis
of the intersections is a measure of this
distortion,
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Figure 15. Using the lens under test in collimation increases the sensi-
tivity of the test since the unwanted focusing term is biased
out in collimating the source.
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of a test lens, where o = a(r) describes the angular aberrations of the
lens under test.

The opaque circular rings of G2 lie on radii rp = ma (a is the
grating period). The distorted rings of the self-image lie on radii
rn' = ry - az. We choose our coordinate axis in the plane of G2 such
that the x—-axis joins the two centers of the two concentric circular
ring structures and the y-axis lies on the perpendicular bisector as
shown in Figure 14(b). The equation for the circles of our two ring
structures are:

(x + 8/2)2 +y2 = rmz; (x - s/2)2 +y2 = r&z.

The simultaneous solution of these two equations gives us the
coordinates of the overlapping rings. Solving for §(rp), which is the

x-coordinate of the moiré fringe closest to the y-axis,we have
§(ry) = lalry)z/s] [ry - alry)z/2].

We can always choose the lateral shift a(rp)z << 2r,, so that the devia-
tion is simply related to the deviations,

8(rm) = z rp alry)/s.

As an example we pick a lens where ay = air + a3r3 + ... . The term

ens
a1r describes the focal power while a3r3 + ... are the spherical aberra-
tion terms of interest. We can eliminate the ojr term by using the test

lens in collimation as shown in Figure 15. In this configuration we have

®eng ~ O1T = a(ry). Therefore

8(ry) = la(rp)z/s] [rp - a(ry)z/2].

For small distances Too a(rm) a~ () since the lens has no aberrations on

axis. For larger distances rp we choose a(rp)z << 2r; so that
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6(rp) = (zrp/s) a(ry).

The distance z is equal to the separation of the gratings. We see that
the deviations from the y-axis u(rm) are simply related to the angular

aberrations of the lens.

Filtering

The setup for spatial filtering is shown in Figure 16. It
requires the addition of a telecentric system placed behind G2 to make
it possible to separate out the various diffracted orders, by placing a
binaryAmask in the filter plane. The analysis and setup are analogous
to the lateral shearing interferometer. The results are identical if we
replace the variable x by r. The usual bandwidth restrictions for
spatial filtering apply. Thus the bandwidth Ap of our object ug(r, @)
must be less than 1/a. Physically this means that the grating period

must be less than the tiniest object details that we wish to resolve.

a. Zeroth-order Filtering

By zeroth-order filtering we mean that only those rays that are
approximately parallel to the optical axis beyond G2 are allowed to
reach the observation screen. This is accomplished with a telecentric
system that focuses these rays to a point on the optical axis. This is
illustrated in Figure 17. A binary filter with an aperture large enough
to allow these rays to pass, but small enough to reject the other orders,

is placed in this plane. Thus only terms with m + n = 0 in eq. (10)
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The Talbot interferometer modified to do spatial filtering.

Figure 16.
The telecentric system provides a filter plane for the
insertion of the binary filter and the image plane is con-
jugate to the object.
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Figure 17. diagram showing how the zeroth diffracted order is filtered.

51




will appear in the final output of fhe instrument. In order that
filtering be accomplished, the zeroth order must not overlap terms with
different (m + n) orders. Thus the bandwidth Ap of our object uy(r, @)
must be less than the inverse of the period of our grating (Ap < 1/a).
Physically, this means that the grating period must be smaller than the
tiniest object details that we wish to resolve. If we place an opaque
mask with a disc opening of radius Af/2a into the back focal plane of L2,

then what we observe at the screen is

v(r,p) ~ Z sz el™ ug(r - mA,9).
(m)

Only terms with m = -1,0,+1 of this equation are significant, since C;

~ 0 gnd €32 ~ C;2/9. Therefore, we have
v(r,9) ~ Co? ug(r,®) - (C1/Co)? [ug(r+a,®) + ug(r-4,9)] .

If we choose a mark-to-space ratio of 1.3, then (C;/Cg)? = 1/2,

and the above equation becomes
v(r,p) ~ ug(r,9) - (1/2)[ug(x+b,9) + up(r-A,9)].

If the shift A is much less than the tiniest object details we wish to
observe, then this equation approximates the second derivative, v(r,p)
-32uo(r,w)/a;2. This result is similar to our previous unfiltered
result. There we did low-pass filtering with the frequency limitations
of the observational method. When the gratings can be resolved by the
eye or other recording media, then one sees the grating structure super-
imposed on the object. For this case, zeroth order filtering would be

desirable.
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b. First-order Filtering

First-order filtering is just as easily accomplished, but the
setup must be modified slightly in order_tq achieve the first radial
derivative. Figure 18 demonstrates that both first-order diffraction
rays intermingle in the back focal plane of the lens, making it impossi-~
ble to separate out either the m + n = +1 or -1 term. A simple remedy
to restore order is to block one half of'the grating. In this way rays
from the lower half do not intermingle with the upper rays in the
diffraction pattern.

Since the m + n = +1 or -1 term lies in a semicircle, an opaque
mask with a transparent semi-annulus will transmit either one of the
first orders (see Fig., 19). This modified setup means that one half of
our circular grating is blocked.

Fortunately, our theoretical analysis is only modified by a
constant factor. 1/2 as discussed in Appendix 3. Thus the output of

this modified setup is 1/2 that of eq. (9), i.e.,

V(0,9) ~ %Zx ¢y Cy Jim 2mi(mtn)r/a wo(r - mb,@) .
(m) (n)

With the insertion of the semi-annular binary mask, only the
m+n=+1 (orm+ n = -1, if we rotate the annulus by mradians) will
pass through to the screen. With a Ronchi ruling all even Fourier
coefficients are zero. Therefore, the field at the screen is

2 )
v(r,p) ~ '::]Z;,COCI [uo(r’(p) '_UO(I—A,(P)] e 'lTlr/a-

I1f we drop the uninteresting factor exp 2mir/a from further

consideration, and introduce a shear that is smaller than the tiniest
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Figure 18. A diagram showing the intermingling of the negative and positive
first diffracted orders, thereby making it impossible to do
first order filtering.

image

lens

Figure 19. The tail end of the interferometric setup showing the semiannular
spatial filter used with first order filtering.
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object details of interest, then our equation reduces to the first

radial derivative, v(r,p) ~ du(r,p)/or.

Experiments

Our circular gratings were photographic reductions of the circu-
lar pattern that is included in the Edmund Scientific moiré kit. Two
identical gratings were made. Our gratings were examined under a micro-
scope and determined to have a mark-to-space ratio of about 1.

Spatial filters were made from photographs of drawings that were reduced
to the required size. Both xenon-arc and helium-neon laser were used as
sources. Color fringes of high contrast were observed with the xenon
arc. We present only our black and white work.

The interferometer was set up on a laboratory bench according to
the schematic of Figure 9. A 5 mW helium-neon laser beam was expanded
to 50 mm by a 250 mm effective focal length objective and filtered with
a 6-micron pinhole. Our first circular grating Gl was placed within the
beam and another identical grating G2 was centered in one of the negative
self-image planes of Gl. The negative self-image plane in which G2 is
inserted is chosen so that the test object which is between the gratings
can be placed sufficiently far away from G2 to yield the desired shear.
A uniform dark field is observed at the screen. Inserting a test object
produces moiré fringes through a distortion of the first grating's
negative self-image at G2. For photographic purposes, a lens was placed

behind G2 with the film plane conjugate to the object.
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a. No Filtering

The fringe pattern for a bifocal lens is shown in Paper 2, Fig.
2. We used Kodak's high-contrast copy film. The fringes are contours
of constant phase derivative. Note that the smaller lens contains more
fringes than the larger one due to its higher focal power. The object is
aligned so that the optical axis for the large lens is collinear with the
optical axis of the system as we see from the circular fringes. The
smaller lens has horseshoe-type fringes since it is off-axis and we are
looking at its off-axis aberrations.

Moiré fringes in the shape of hyperbolas are observed when two
circular gratings are shifted laterally with respect to each other, and
look very much like spikes for small shifts. If our test object is a
candle flame, the spikes will be deformed by the change in refraction
index of air due to heat. 1In Paper 2, Fig. 3 is a photograph of this

experiment where the candle is approximately 13 cm from G2.

b. Shifted Gratings

As stated above, shifted circular gratings produce moiré fringes
in the shape of hyperbolas. There is also a moiré fringe due to the
overlapping of rings of equal diameter that fall on the perpendicular
bisector of the line joining the centers of the shifted gratings. We
can display this fringe alone by using a small shift s between the
grating centers.

It was shown earlier that with the addition of a phase object

the deviation 8 from the perpendicular bisector is simply related to the
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angle through which the ray is bent. For the case of a lens in collima-
tion, 8 was simply related to the aberrations of the lens. Figure 20

shows a lens of 380 mm focal length in the collimation setup. The shift
s =0.07 mm and z = 57 cm. The deviations 8 are a measure of this lens's

aberration.

c. Filtering

Filtering is accomplished by means of binary masks placed in the
Fourier plane of the transform lens L2 that separates one diffracted
order from another. The location of the filter plane depends on the
focal length of L2 and sometimes also on the object if it happens to be
a lens. Should the test object be a bifocal lens with focal lengths f;
and f,, for example, then two Fourier planes exist and filtering cannot
be done in either plane without eliminating information located in the
other. Under certain conditions there exists an intermediate plane in
which the orders are separated, and the filter can be inserted there.
The condition under which this region exists is given in Appendix 4 as
Aa > yhy(£,7! - £,-1)M, where h; is the height of that part of the
object with focal length f;, vy is a number less than 1 and depends
upon the angle at which the diffracted orders meet, and M is the magni-
fication of the object at the screen. Note that the éondition is
independent of the focal length of the transforming lens.

Our demonstration of triple and double-shearing interferences
for zeroth and first-order filtering respectively uses a ring cut from
brass tubing with an outside diameter of 19.05 mm and an inside diameter

of 15.37 mm and soldered to a post. If the shear A exceeds the thickness,
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then individual rings will be observed. In this way it is sufficient to
count the number of rings to determine whether double or triple shearing
interferences are obtained by simple filtering. The ring was inserted a
distance 973 mm from G2. That gave a shear (A = Azz/a) of 2.4 mm, there-
by insuring that our images would be separated.

For zeroth-order filtering a binary mask with a transparent disc
is placed in the filter plane. The diameter of the disc is such that
the periphery of the disc falls midway between the zeroth and fifst

diffraction orders. At the observation screen we observe
[v(r,@) |2 ~ Co*lug(r,@) |2 + Cy*{ lug(x+8,9) |2 + Jug(x-1,9) |2}.

The intensity of the unshifted ring is associated with COL+ while the
intensity of the shifted rings are associated with Clq. Hence the
shifted rings will be of lower contrast than the unshifted ring. A
photograph of this is presented in Fig. 21(a). One half of the field is
blocked for convenience when comparing this figure with the first-order
filtering of Fig. 21(b).

For first-order filtering one half of the circular grating is
blocked to separate positive and negative orders; a semiannular ring is
piaced in the filter plane, oriented to pass either n +m =41 or n + m
= -1 diffracted orders. In the photograph of Figure 21(b), we show the
result of passing the positive order. Two rings of equal contrast are
observed as predicted by the theory. One image is unshifted and the
other is shifted away from the axis. Rotating the semiannulus by 180
degrees allows the negative diffracted order to pass. In this case, we
would have an unshifted image and another image of equal intensity

shifted toward the axis. Comparing this photograph with that of the
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previous figure demonstrates that spatial filtering with simple binary

masks can produce either double or triple shearing interferences.

Figure 20. The aberrations of the lens tested with shifted circular
gratings are directly displayed as deviations from a
straight line passing through the center. Virtually no
aberrations are visible near the optical axis.
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Figure 21(a). A ring object under test in the constant radial interfero-
meter. A large shear is introduced by placing the object
93 em from G2. Zeroth order filtering produces triple
shearing interferences and only one half of the field is
viewed.

Figure 21(b). The same setup as (a) except that first order filtering is
used.
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CHAPTER IV

THE TALBOT SPECTROMETRIC IMAGER
Introduction

Of the many instruments that measure the spectrum, Fourier spec-
troscopes have received considerable attention. This is due mainly to
two advantages: the multiplex advantage and the optical acceptance
advantage. The latter applies to the Michelson interferometer only and
theoretical luminosity gains of 200 over the gfating spectrometer have
been reported.l The multiplex advantage refers to the simultaneous
encoding of all wavelengths onto a single detector by assigning each
resolution element its own carrier frequency. In this manner a time
advantage of great importance is obtained which is used either to decrease
the time of observation or to increase the signal-to-noise ratio by time
averaging. An example of this time advantage is the planetary spectra
of P. Connes and J. Connes obtained with a Michelson interferometer that
could have been obtained with a good grating spectrometer in a total
time of a few thousand years.2

In addition to the Michelson interferometer, various additional
schemes for multiplexing a spectrum have been devised. The output of a
dispersing spectroscope such as a prism has been multiplexed in two ways.
One method uses a rotating reticle on which a set of concentric annular
rings are marked and places it in the exit plane of the spectroscope.
Each annular ring has a different number of equal opaque and transparent

sections and encodes a different spectral element. The total light is
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gathered and recorded. The other method is to place a stationary mask
in the exit plane of the dispersing spectroscope4. The mask has a number
of slits that are either opaque or transparent. The light is gathered and
recorded, and then a new mask is inserted.. The number of resolvable
spectral elements equals the number of masks that are used. In order to
retrieve the spectrum, the masks are designed so that the recorded inten-
sities can be expressed as a product of a Hadamard matrix and the unknown
spectral elements. Recovery is accomplished by a Hadamard transformation
which is reportedly five times faster on the computer than the Fast
Fourier transform. Of importance in this chgpter is the scheme for
multiplexing spectra with the Talbot effect.5 The coding is a cosine
transformation of the spectrum as a function of the separation of.two
gratings. Another cosine transférmation recovers the spectrum.

Not only can the spectrum be multiplexed but images, too. An
image scanning system that multiplexes a two dimensional scene with a
single defector has been proposed.6 The scene is imaged onto a two
dimensional mask that‘either transmits or blocks light at various points
on its surface. The light is gathered and the intensity is recorded.
Then this mask is replaced by another mask with different opaque and
transparent regions than the previous one, and the intensity is recorded
again. If m x n elements of the scéne are to be encoded then m x n masks
are prepared and m x n intensities recorded. The masks are based on the
two dimensional Hadamard matrices and retrieval is accomplished with a
Hadamard inverse transformation.

This image scanner was extended to encode the brightness distri-

bution of a scene not only as a function of coordinates (a,B) as above
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but also as a function of A from point to point.7 This new instrument is
called a spectrometric imager. Thus the decoded output of such a system
could be a series of scenes in which the intensity at a given A would be
p?esented. The modification here is to follow the mask of the above
image scanning system with a dispersing spectrometer like a prism and
then a slotted mask with say p slits placed in the exit plane of it. The
slits would be designed according to the Hadamard matrix again; the
light gathered; and the intensity recorded. Here m X n X p elements are
encoded which require m X n X p measurements.

The Talbot interferometer follows this kind of development.
First there was the spectrometer and now in this chapter we examine the
theory of using the effect to make an image scanner and a spectrometric
imager. Our theory for the image scanner shows that the spatial distri-
bution éf a scene is encoded as a Fourier cosine transform if we restrict
the acceptance angle of the instrument. The scene is recovered from the
encoded data by a cosine transformation. The Talbot equivalent of a
spectrometric imager is a bit more complicated, requiring four gratings
if the total Fourier cosine space is to be accessible. The two grating
instrument can only explore a conical surface in the Fourier space of
S(a,B,1). The extra set of gratings allows us to explore the whole
volume. The theory for the Talbot image scanner and the Talbot spectro-
metric imager is presented in this chapter. The image scanner is a

special case of the spectrometric imager.
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Theory

The basic theory for an image scanner and a spectrometric imager
(See Fig. 22) consists of two gratings and resembles the shearing inter-
ferometers of Chapter III. It differs in the way we observe the light
intensity. The light behind the second grating is collected onto a
single detector,and its intensity as a function of grating separation is
measured. The second grating has a lateral motion that allows electronic
filtering of the encoded data. The combination of lens L1 and a scene
in its front focal plane models a distant target such as the sky. Self-
images of Gl are formed by the diffracted light waves that originated in
the scene,and the light intensity falling on the detector is modulated
by the laterally moving G2 with velocity vy. We rotate grating Gl and
G2 by angle @, keeping their rulings parallel. In actual practice the
scene would be rotated by a dove prism instead of rotating the gratings.
The gratings have a transmission function g(x) = 1 + cos(2mx/d). Other
gratings with more complicated transmission functions like the Ronchi
ruling can be used, but they require considerably more data processing.

The scene is spatially and temporally incoherent so that the
total intensity at the detector is the sum of the intensities contributed
by each point in the scene. Therefore the response of the spectrum to a
single point in the front focal plane of LI, called the "point spread
response', characterizes the instrument. The total response to any
scene is then a weighted sum of point spread responses, where the weight
given is equal to the intensity for each point in the scene. The compu-

tation of the point spread response of our instrument follows.
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Point Spread Response

Let a monochromatic point source of wavelength X be located at
(x',y") in the front focal plane of L1. Therefore a plane wave with
direction cosines a & -x'/f, & -y'/f and y = Y1 - a2 - B2 will impinge

upon Gl. Just behind Gl for @ = 0 we have
u(x,y,0") = exp{ik(ox + gy)} [1 + cos(2mx/d)]; k = 2u/X.

Using a reasoning like Edgar's,8 the grating diffracts the light so that

three plane waves propagate beyond the grating and the field becomes

u(x,y,z) = exp{ik(ax + By + YZ)} +
%-exp{ik[(a —Ad)x + By + z/1 - (o - A/d)2 - B2]}+
%’exp{ik[(a + A/d)x + gy + zV1 = (o + A/d)2 - B2]}.

Great simplification results when the square root terms are expanded in

a power series and only the first three terms are kept. Since the instru-
ment will be operated only in the region (a,B) where the first two terms
are significant, only three terms are kept, where the third term will

define the restricted region. Therefore,

V1 = (o + A/d)2 - g2 = 1 - %{u £ A/d)2 - %-32 -

(o = A/d)? + B2]2.

oo =

Substituting this into our field equation and collecting like terms
yield
u(x,y,z) = exp{ik(ax + By + vyz)1} {1 + exp{-(imzr/d?)
(1 - 302/2 - g2/2 - A2/4d?)}]

cos{(2r/d) [x - za(l + a2/2 + g2/2 + 22/2d2)1}.
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By restricting the size of the source region the propagating field is

—-imzr/d?2

u(x,v,z) & l1+e cos[2n(x - zo)/d], @8]

where the overall phase factor is dropped since it is intensity that is
detected, and the approximation is valid if wzA (302 + 82 - 12/2d2) < n/4
and mza(a? + g2 + A2/d2)/d < /4. The former condition implies that the
useful region (0,B) lies within an ellipse whose major axis coincides
with the B axis and is V3 times as large as the minor axis. Since the
gratings will be rotated, the region of restriction lies within a circle
whose radius is given by the minor axis, r = dg/Az. The second condition
is less restrictive.

The field behind the second gfating is given by the product of
the propagating wavefield, eq. (1),and the grating transmission function
for G2,which is moving laterally with velocity vy. Therefore

- 2
U(X:Y,Z+) i {l + e inzr/d

cos[2n(x - za)/d]l}
{1 + cos[2n(x - vgt)/d]},

where zt

indicates the plane just behind the second grating. The light
- in this plane is gathered and recorded by a detector whose signal is

proportional to the total intensity. Therefore the detected intensity is

ID(z,a) ~ Iu(x,y,z"‘)!2 dxdy
P

where the interval of integration is over the illuminated region I, and
the size of the receiver covers all significant diffraction orders.

There are nine terms in this integration. Those terms like

cos[2m(x - vygt)/d] dxdy & 0. Terms independent of x and y are not

zero and they give the point spread response of the system as
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ID(z,a) ~ 9/4 + 2 cos(nzk/dz) cos[2m(vyt - za) /d]

+ %-cos[&n(vxt - za)/d], (2)

where dxdy is chosen to be 1.

Demodulation of the Response

The point spread response of equ. (2) contains a dc.term and two
time modulated terms. Each modulated tefm has its own temporal carrier,
vgx/d and 2vy/d, and they can be filtered either by a computational step
or electronically. Therefore the two terms cos(ﬂzk/dz) cos(2mza/d) and
cos(4mz)/d) can be separately treated as point spread responses of a new
system that includes a filtering step. The former term contains both X'
and o information whereas the latter has only a. We select the a only
term for our Talbot image scanner and the other term for the Talbot
spectrometric imager. Before considering these two instruments a review
of the Talbot spectrometer would be appropriate. The spectrometer

selects the term in .

The Talbot Spectrometer Review

5
The Talbot spectrometer” uses the cos(nzA/d?) cos(2mza/d) term.
By restricting the source with a narrow slit so that cos(2mza/d) > 0.7,
this part of the term can be ignored. Our restriction means that the

angular width of the slit is a < d/8z. The detected intensity is

I(z) ~ | S(A) cos(rzA/d?) d = Re S(p),
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where p = z/2d2, Re means the real part of what follows, and S(p) is the
Fourier transform of S(A). The spectrum can be recovered by another

cosine transformation,
Ip(e) cos(2mpd) dp = 3 [SQ) + s(-1)].

Since we encode only the real part of the Fourier transform the recovered
spectrum is even. However S(A) = 0 for A < 0, and there is no ambiguity
in the result.

The resolution of the spectrum is easily calculated by letting

S(A) = 8(A = xg + AA/2)+ §(A = Ay - AA/2). The recorded intensity is

In(z) ~ cos[2mp(Ay = AX/2)] + cos[2mp(hg + AX/2)]

= 2 cos(2mpAX) cos (4mprg),

where cos(4mplg) is the carrier and cos(2mpA)) is the envelope of the
signal. A contrast reduction of 0.7 in ID(z) can be detected by the eye
and this occurs when 2mpAX = n/4. Solving for A\ we have AX = d?/4z.

The minimum detectible separation S6A occurs for the largest z. From
chapter II the largest z is Z ax Ndz/ZA, where N is the number of
grating periods in the illuminated field. Therefore the resolution

SA/A = 1/2N. For a sodium doublet Ay = 5893 R and AX = 6 R and therefore
a grating with at least 500 lines can resolve the doublet. With photo~
electric measurement of I(S) and hence §(p) the resolution will be

better since the drop of the envelope will be detectible long before it

goes down to 0.7 of its maximum.
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The Talbot Fourier Analyzer

This instrument uses the cos(4mzo/d) term so that a mask
M(x'/f,y'/f) placed in the front focal plane of lens L1 has a recorded
intensity

Ip(z) = M(x'/f,y"'/f) cos(4mzx'/fd) dx'dy',

where the interval of integration is (-~,+~) and o & -x/f, B = -y'/f. If
a real function g(x'/f) is fo be analyzed, then we make a function mask
such that M(x'/f,y'/f) = 1 for 0 < x"/f < Q, 0 < y'/f < g(x'/f), and zero
otherwise, where Q includes the entire range of g(x'/f). The size of

the mask is limited to the region where our simplified point spread

response is valid. Consequently,

Ip(z) ~ M(x'/£,y"/f) cos(4mzx'/fd) dx'dy'
Q re(x'/f)
=ff dy' cos(4mzx'/fd) dx'
0J0
Q
= g(x'/f) cos(4mzx'/fd) dx' = Re fF(v),
0

where v = 2z/fd.

Since only positive values of g(x'/f) can be simulated with our
mask, functions with negative values cannot be directly encoded. A
positive constant value is added to the function so that it is every-
where positive. Knowing the result in the transform domain of adding
a constant to a function, this bias can be subtracted from the final

output.
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The Talbot Image Scanner
Theory

Let S(a,B) be the brightness of a scene as a function of its
angular coordinates (a,B8) and filter out the cos(4mza/d) term of the

point spread response. The recorded intensity will be

Ip(z) = S(o,B8) cos(4mza/d) dadB = Re S$(v,0) (3)
where

§(v,u) = S(a,B) exp{2mi(va + pR)} dodB

is the two dimensional Fourier transform of S(a,8), v = z/2d radians™!.
The recorded signal is a special case of the two dimensional
Fourier cosine transformation and explores a single straight line in
this space. The highest recorded frequency is given by the greatest
separation between the gratings which cannot exceed Z ax - Nd2/2A, where
N is the number of grating periods. Another straight line can be
explored in the transform space by tilting both Gl and G2 by ¢. Because
of this tilt equ. (3) takes on new coordinates a',B8',v',u' where o' =
@ cos @ + B sin @, B' = -a sin® + B cos @, V' = v cos © + y sin @ and

u' = 0. Equation (3) becomes

Ip(z,p) = S(a',B') cos(2rvia') da'dpR' = Re §(v',0),

where v' is a straight line in the transform space (v,u) tilted by an
angle ¢. This is sketched in Fig. 23.
Thus the total transform space is accessible to the image scanner

for encoding. The grating separation z determines the magnitude of the
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Figure 23. The transform space for tilted gratings. The recorded signal
gives us the value of the cosine transformation on the v' axis that tilts
with the gratings. Therefore the entire transform space can be sampled.
frequency in the transform plane that we are encoding the tilt of the
gratings gives us its orientation so that the coordinates of §(v,u) are
given by v = v' cos ¢ and u = v' sin @. For the straight line sampling
the gratings are rotated by A and then the gratings are separated from
zero to 2 ax’ The gratings are rotated by another AP and then separated
again. This is repeated and in this manner the traﬁsform domain is

sampled along straight lines that look like a collection of spikes.

Another way to sample the transform space is by incrementing the

separation of the gratings by some fixed distance Az and rotating them

through one revolution. Then they are separated by another Az and once more

rotated. The sequence is continued until Z ax is reached. In this way
the transform space is sampled in regions that form a set of equally
spaced concentric circles.

A third way to sample the transform space is to separate the
gratings continuously while rotating them so that the transform is sampled
on a spiral. The shape of the spiral depends upon the relative motions

between rotation and separation. A spiral with many revolutions occurs

73




if we rotate many times as we separate the gratings. This situation is
approximately the same as the concentric circle case. A sequence of
spirals that do not complete one revolution can be made by separating the
gratings through the maximum extent for a small rotation that is but a
fraction of one revolution. The next spiral is generated through separ-
ating the gratings again, and so forth. A sequence of spirals that look
like spikes is obtained. Sampling in the Fourier domain means that our
recovered image will be replicated. If the sampling is sufficiently
dense then the total transform is known through interpolation in a way
analogous to the dimensional sampling theorem in cartesian coordinates.
In this way the image can be recovered. Work by Barakat9 can be used
for the circular sampling case and that by BracewelllO for the straight
line sampling. Unfortunately the formulation does not lend itself to
the Fast Fourier transform for which the sampling points should be on a
rectangular array.

A less efficient way of scanning the transform domain is to
program z and @ motions so that the scan travels along lines that are
parallel to the v or p coordinate. This is accomplished by holding a
constant value of say vy or ujy depending upon the scan desired, so that
vg = z(t) cos @(t)Aand o = z(t) sin @(t), where z(t) = zy + v,t and
¢(t)_= g t+ wt, v, is the longitudinal velocity of G2, w is the angular
velocity of the gratings and zy, ¢y is the initial polar coordinate from
which the scan begins. In this way the Fourier domain is scanned in a
rectangular array and the Fast Fourier transform can be used go recover

the image.
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Special Cases

In this section we discuss special scenes which can be handled
simply without the need for sampling the transform domain. Consider an

object that contains a number of straight lines as shown in Fig. 24.

Y

Figure 24. Spike scene. This scene can be easily deduced by the instru-
ment, as explained in the text.

The Talbot image scanner can be operated in the following mode to detect
the orientation of each spike. Position G2 in one of the self-image
planes of Gl. G2 need not be moved laterally but can instead by tilted
slightly with respect to Gl so that moiré fringes will be observed if
there is a self-image of Gl at G2. If this shift exceeds d/4 then the
sum of the self-images produce a relatively constant illumination.
Therefore no self-images are formed. This situation occurs when the
line source is not parallel to the rulings. By observing the contrast
of the moiré fringes as the gratings are rotated the orientation of each
line source can be determined. From Appendix 1, the source requirement
is o < d/4z. If the gratings are separated by z = Nd2/2) then the
smallest deviation 8o will be Sa < A/2Nd. To convert this to accuracy
in rotation &8¢, let L be the length of the source; then &9 %=§q/L =

~A/2NdL, for small angle approximation.
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Another special objecf would be a uniformly bright scene such as
a mountain range at a far distance or a cloud mass of smog. We use the
Fourier analyzer mode of the image scanner, and what we decode later on
gives us the profile of the mountain range. If it is not uniformly
illuminated, then what is recovered is the effective profile. This
silhouette example is mathematically equivalent to the mask case dis-
cussed previously in the Fourier analyzer section.

For a scene S(a,B) = S;(a) S,(B) where the function is separable
as for example across one dimensional gratings, only two measurements are
required. The first measurement is made with @ = 0 and the gratings are
separated. Then the gratings are tilted to @ = j/2 and the measurement

repeated. We have for ¢ = 0

v/;z(e) dgp S;(a) cos(2mva) do Cy Re §1(v)

and for @ = w/2

/Sl(a) doafsz(s) cos(2mvB) dB

where C; = Re S;(0) and C, = Re S,(0). Hence C, Re §;(0) = C,C; and we
1 1 2 2 2 1

Ci Re §2(U),

can use this to get Re $;(v)/C; and Re éz(v)/Cz. The two dimensional
cosine transform is Re S(v,u) = Re §1(v) Re §2(u). Taking the inverse

of this recovers the scene.
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The Talbot Spectrometric Imager

The Talbot spectrometric imager uses the cos(nzr/d?2) cos(2mza/d)
term that is filtered from the point spread response. Therefore for a
one dimensional scene whose brightness is given by S(a,})

the detected intensity is
Ip(z) ~ S(o,)) cos(nzA/dz) cos(2mza/d) dodh.

In order to have the same units for the brightness variable we substitute

o ~ x/f in our equation. Expanding the trigonometric function yields
Ip(z) ~ S(x,1) {cos[2m(pr + vx)] + cos[2m(pr - vx)]} dxdx

= Re S(p,v) + Re S(p,-Vv) (4)

where §(p,v) is the two dimensional Fourier transform of S(x,y), p =
z2/2d%2, v = z/fd. Since v = 2pd/f, the complete two dimensional cosine
transform is not encoded as a function of z but rather only on a straight
line that makes an angle 6 = arc tan (£f/2d) with the v axis, as shown in
Figure 25. 1In order to sample the whole transform space,the ratio f£/2d

must be varied. This can be accomplished by having a zoom lens arrange-

p

Figure 25. Sampling in the cosine transform space S(a,2). The sampling
is along the double lines which form an angle 6 = tarc tan (f/24).
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ment or by having gratings with variable pitch. This latter arrangement
will be mentioned later.

These arguments are easily extended to the most general scene
S(x,y,\). For this scene we rotate the gratings as we did for the image
scanner. Therefore variables in the new coordinate system become o' =
o cos @ + Bsin @, B' = B cos @ ~ o sin @, v' = v cos ¢ + p sin @, and u'

= 0; eq. (4) becomes
Ip(z) ~ S(x,y,A) cos{2m[pA * v'(x cos @ +y sin @)]} dxdyd:

= Re S(v',0,0) + Re §(-v',0,p),

1 \

where v', p are interdependent, v = v' cos ¢, aqd 4 =yu' sin @.

Because of the interdependence our scan explores straight lines
in the three dimensional transform domain. These lines go through the
origin. By varying ¢ other such lines can be explored. The accessible
lines together form a two sided cone with its center at the origin. The
angle of the conme is given by arc tan (2d/f). In order to scan the
whole volume the cone angle must be varied. This is accomplished by
chaﬁging f as with a zoom lens or by using variable pitch gratings.

A variable pitch grating can be synthesized with two Ronchi
rulings in contact with each other so that moiré fringes are formed. The
period p of the moiré fringes is given by p = d/2 sin(y/2), where ¥ is
the angle at which the rulings meet and d is the period of the Ronchi
rulings. Using the moiré fringes for Gl and G2 of our instrument we can
vary the period by changing the angle y. In this way the total volume
can be measured. This solution means a loss of light through the instru-

ment because four gratings are used instead of two. Therefore only one-
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sixteenth of the light intensity at the entrance of the instrument
reaches the detector instead of one-fourth with two gratings. This loss
of light makes this a dubious solution. One alternative is to use omne
amplitude grating and one phase grating to obtain the moiré fringes. In
this way the light throughput of this instrument is unaltered.

A great number of scanning schemes can be imagined in three
dimensions. One would be a series of spikes pointing in all directioms.
Another would be a three dimensional spiral like the winding of a ball
of string. The exact scanning scheme has not been worked out for the

Talbot spectrometric imager.
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CHAPTER V

CONCLUSIONS
Summary of Results

A number of instruments have been proposed in this report
together with their theoretical analysis. Experimental evidence for the
two shearing interferometers and the autocollimator has been presented.
These results show that the Talbot effect can be successfully employed
in the design of new optical instruments. In particular we mention the
adaptation of our constant radial shearing interforometer by a large
eyeglass manufacturer for the testing of their new multifocal lenses.

At the outset we pointed out the advantages of the Talbot effect
in the design of new instruments. These advantages were borne out
during the course of the work. Their low cost and their insensitivity
to poor quality gratings is particularly gratifying. Our first exper-
iment used gratings that were severely scratched without materially
altering the performance of the instrument. The Ronchi rulings could be
purchased for as little as $3.00 per square inch (250 lines/inch) for
sizes up to 2" x 2"1, and $9.00 per sq in. (300 lin/in) for sizes up to
80" x 80"2. What continually amazed visitors about our demonstrations
was the ease with which the setup could be adjusted. The entire inter-
ferometer could be assembled and adjusted within fifteen minutes. This
is due to two factors: (1) The scale of the experiment is in units of
the self-image interval which was about 3 cm in our experiments. This
is a convenient distance for an experimentalist to handle since it does

not require micropositioning nor an enormously large laboratory.
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(2) The self-image distance is dependent upon the grating period. If
the gratings are inadvertentl& tilted, then the effective grating period
is reduced by only a cosine factor. Thus small error angles of as much
as five degrees were tolerable.

The Talbot shearing interferometers measure both the radial and
lateral phase derivative of the wavefront under test by using either a
circular grating or a Ronchi ruling respectively. With simple binary
filters either triple or double shearing interferences could be obtained.
These interferences become the second and first derivatives respectively
if the shear introduced . is less than the width of the tiniest details
in the object. The amount of shear introduced depends upon the distance
that the object is placed from the second érating as well as the dif-
fraction angle. This affords a great range in sensitivity. Maximum
contrast in the interferogram is obtained by placing the second grating
in the self-image of the first. Small deviations from this position
only affect the contrast by a cosine factor. Therefore positioning of
the gratings was not critical, making this instrument very simple to set
up. Used like a Schlieren setup, the interferometer can study the flow
of hot gases. Beautiful color effects may be introduced to give
additional information. The autocollimator is a special case of the
Talbot interferometer. It tests the curvature of the wave at the first
grating which can be related to the amount of defocussing of the coll-
imating objective. With photoelectric measurement the sensitivity of
the instrument can be increased by about two orders of magnitude.

The theory of the image scanner has been presented, and special

objects investigated. The output of the instrument gives a single
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point in the Fourier cosine transform space of the scene. By rotating
the instrument and seperating the two gratings this point can be shifted
and the domain scanned. Several scanning schemes are discussed. The
Fourier analyzer is a special case of this instrument. The instrument
is not rotated and the scene is replaced by a function mask in the front
focal plane of the collimator. The preparation of the function mask was
described. By separating the gratings the cosine transformation of the
function is measured.

A theoretical study of the spectrometric imager is presented.
The output is a Fourier cosine transform of the scene as a function of
its angular coordinates and wavelength. The output is a single point in
the three dimensional Fourier cosine transform space for each angular
orientation of the instrument and the grating separation. With two
gratings only, a surface in the three dimensional transform space can be
scanned. To scan the complete volume, the system must be modified by
including a zoom lens or by using variable pitch gratings. The variable
pitch grating can be synthesized by using the moiré effect between two

Ronchi rulings.

Suggestions for Further Study

It is the nature of research that one is never completely done
with his task. Another question lurks in the shadows ready to replace a
question recently disposed. 1In the following paragraphs are discussions
in the nature of unfinished business and some side adventures.

The maximum sensitivity of the Talbot instruments is limited by

the maximum distance over which the Talbot images occur. This distance
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is given in Chapter Il as zy,y = Bd/2\, where B is the width of the
grating, d is the grating period and A is the wavelength of the light.
A Talbot image is formed by the interference of the diffracted orders
with the zeroth order. These interferences occur until the diffracted
orders walk off the zeroth order. With the addition of two mirrors
placed alongside the zeroth order, the diffracted orders are reflected
back into the zeroth order thereby increasing ZyAx by the length of the
mirror. The mirror requirements should be relatively low since they are
used at a grazing incidence of the order of the diffracted angle
(about 10_3 radians for our experiments). Therefore experiments should
be conducted to test this idea. It would also be useful to examine
whether a number of smaller mirrors could replace a single large mirror
to extend ZMAX'

Another interesting experiment suggested by A. Lohmann is to use
a prism prior to the first grating of the lateral shearing interferometer.
White light is used as a source, and the prism diffracts the light into
its various colors. Since each wavelength enters the first grating at a
different angle, the self-images for each color will be shifted. This
modified scheme has the advantage of tainting the positive from the
negative derivative differently since the setup is no longer symmetric.

The Fourier analyzer, image scanner,and spectrometric imager
should be constructed and checked experimentally for feasibility.
It would be best to build them in this order since experimental experience
from one can be used in the construction of the next. Theoretical
studies of the efficiency for various scanning schemes on the latter two

instruments should be done so that an optimum data collection scheme can
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be programmed. My guess is that the spiral scan is the most efficient
way of operating the instruments; however, recovery of the scene from
this type of scan would have to be developed. Schemes for presenting

the scene as a function of its three parameters, two position coordinates
was wavelength, should be studied. A solution would be to use a two
dimensional imaging device such as a TV screen and use color to present
the third parameter.

In conclusion we can say that our goal has been partially accom-
plished. We set out to measure the distribution of radiation S(a,B,A) as
a function of its angular coordinates and wavelength. Simple experiments
were attempted at first dealing with S(a). From these studies we learned
the critical parameters of the instrument that we choose. In particular
we found that collimation and good quality substrates for our gratings
were important. These discoveries pointed the way to the invention of a
new autocollimator and two new shearing interferometers. Our final step
was to complete the theory for an instrument that would measure the total

distribution S(a,B,A).

References for Chapter V

1. Edmund Scientific Co., Barrington, New Jersey
2. Max Levy Co., Inc., Philadelphia, Pa.
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The moiré effect is very sensitive in detecting small diffe
differences might be caused by an object with phase gradient

ance of such an instrument can be understood in terms
imaging" or "self-imaging"). Slight modifications prov
tive of the object.

The moiré effect reveals very small imperfec-
tions of two gratings placed on top of each other.
Lord Rayleigh used this effect for testing dif-
fraction gratings. The same basic idea has been
used for many other purposes. For example, in
electron microscopy the imperfections in two
pieces of crystal lattice can be made visible in
this way [1]. Essentially the same moiré effect
is utilized for studying the shape of a diffusely
reflecting surface, when the shadow of a grating
falls onto that surface. The grating shadow is
observed through the same grating [2]. Also the
shape of a refracting object can be investigated
by means of the moiré effect [3]. The refracting
object is placed before or behind a first grating
(fig. 1). The shadow of the first grating will be
deformed due to the refractive gradient. The
moiré fringes observed behind the second grating
placed at a distance z from the object are lines
of equal deviation [eq. (1)].

X 0 G2
b
i
Vol r
Gl -

Fig. 1. The Talbot Interferometer. G1, G2 gratings
with period d; ray deflection angle € in object O.
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rences between two similar gratings. These
placed between the two gratings. The perform-
nTalbot effect® (also called "Fourier
terferences and the second deriva-

of the
ide shearing in

€x(%,9) = md/z; m=0, 1, £2... .(1)

We intend to extend this method of observing
refractive gradients by means of moiré. As de-
scribed so far this method is based entirely on
rays. This point of view is not satisfactory since
it is known that wave optical color effects occur
when white light passes through two gratings at
a finite distance. This happens with uncollimated
[4] and with collimated light [5]. Such color ef-
fects may well prove to be useful. A more im-
portant objection against the ray-optical point of
|view is the inability to explain the fundamental
limitation of this method. Based on eq. (1), one
imight suspect that an arbitrarily small deflec-
tion angle can be detected if only the distance z
of the two gratings is sufficiently large. Since
such unlimited detectibility is never attainable

Zero

Fig. 2. Overlapping diffraction orders behind a grating
of finite width B = Nd.




Fig. 3. Talbot interferences with a candle flame as object between the two gratings. a. Gratings parallel, b. One
grating slightly rotated.
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one might try to patch on the following wave-op-
tical argument.

The light passing through a grating slit of
width d/2 does not behave like a ray anymore
after it has travelled over a distance zj, where
the diffraction spread zgA/(d/2) equals the slit
width d/2 [eq. (2)].

apAd/2) = d/2 ;5  zp = dP/AN. (2)

Based on this criterion one might expect €p to
be the smallest detectable deflection [eq. (3)].

€g = d/22g = ax/d . (3)

With A = 0.5 x 10™3 mm and d = 1071 this leads
to eg = 10‘2, which is only moderately good.

Fortunately the method is capable of detecting
angles much smaller than €g [eq. (3)]. This is
due to the Talbot effect [6], which is also known
as "Fourier imaging" [7] and "self-imaging" [8].
Talbot discovered about 135 years ago that
images can be formed without any lenses or
mirrors if the object is a grating which is il-
luminated in collimated monochromatic light.
These "Talbot images” occur at distances 2d2/)\,
4d2 /), etc. behind the grating. When a second
grating at a slight angular rotation to G1 is
placed into the plane of a Talbot image, moiré
fringes of high contrast are observed. These
moiré fringes will be deformed if a refractive
phase object is placed for example close to the
first grating. As before these moiré fringes in-
dicate lines of equal deflection by the object
[eq. (1)].

The largest possible distance zp (or maybe
2z.) depends on the finite width B = Nd of the
first grating. At z7 the first grating diffraction
orders have moved to both sides by half of the
grating width B [fig. 2; eq. (4)].

zpr/d =B/2 =Nd/2; zr=Nd%/2x. (4)

When the two gratings are separated by z the
smallest detectable deflection € is now smaller

by a factor 2N, where N is the number of periods

in the first grating [eq. (5)].
€T =d/ZZT = )\/Nd = K/B = ER/ZN . (5)

We have performed some experiments with
this "Talbot interferometer" as shown in fig. 1.
In fig. 3a the object is a flame, and again in
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fig. 3b, but now with the second grating slightly
rotated around the optical axis. In some addi-
tional experiments we have placed a telecentric
lens system behind the Talbot interferometer.
When introducing a spatial filter into this tele-
centric system and rejecting everything but the
zeroth diffraction order from the two-grating
system one gbserves in essence the second
derivative 82u/3x2 of the object «(x,v). When
shifting the spatial filter to one of the first
grating diffraction orders the image represents
shearing interferences u(x +xz /d, v) -ulx, y).
In a white light one obtains beautiful color
fringes which are unlike ordinary interference
fringes. For example for a specific grating
distance the image contains many blue-orange

fringes. These color fringes are of such high

contrast that E. Lau found a similar setup useful
in designing tablecloths [9]. Our method is also
applicable for the detection of small differences
between two quite irregular but similar objects.
One begins by recording photographically the
fringes from the first object. After development
the photograph is placed where the fringes had
been observed. The first object is now replaced
by the second object, which might actually be
the first object but somewhat deformed. The
moiré fringes between subsequently produced
Talbot interference fringes will reveal small
differences between the two objects. The quanti-
tative evaluation is similar to that for Lau's
dupligram method [10] and for life-fringe holo-
graphic interferometry.
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The linear gratings in our Talbot interferometer are replaced by circular gratings. This new
radial shearing interferometer is sensitive to the radial gradient of the object.

Talbot [1] discovered in 1836 that images of a photographic reduction. The interference image
grating can be formed without any lens or mirror. of a bifocal glass is shown in fig. 2. The inter-
When illuminated by a monochromatic plane wave ference fringes degenerate into spikes (actually
the grating will be imaged at distances 2d2/x, stretched hyperbolas) when the two circular
4d2/x, ete. (d = grating constant). Recently this gratings are not laterally aligned. These spikes
Talbot effect has been used for interferometry [2],assume characteristic shapes when a phase ob-
A second identical grating is placed into one of  ject such as a candle is introduced (fig.3).

the "Talbot-planes" of the first grating. The . There are some remaining questions, which
phase object under investigation is situated be-  we intend to answer in a more elaborate paper
tween the two gratings. The image consists es- .in "Applied Optics". For examp.le, when this
sentially of two shifted object wavefronts or of circular Talbot interferpmeter is to be used for
the first derivative du(x,y)/dx of the object quantitative investigations one has to study how
u(x,v). well the circular grating really produces " self-
For some objects the radial derivative images" [3]. In connection with a spatial filter
du(r,9)/0v is more indicative than the linear ;in plane F of fig. 1 this interferometer can also

derivative 3u/3x. We obtain this radial gradient | produce the second derivative 32u/372. Or it
by replacing the linear gratings by radial gratings'

as shown in fig. 1. Our radial gratings are from

a moiré kit * with a radius step of 0.25 mm after * Product of Edmund Scientific, Barrington, N.J.

Fig. 1. Talbot interferometer with radial gratings. Object O, gratings G1 and G2, filter plane F, image plane L.
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Fig. 2. Interfere image of a bifocal eyeglass. The gratings G1 and G2 are centered.
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Fig. 3. Interference image of a candle. The two gratings are not centered.
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There are two common methods of determining the degree of
collimation: autocollimation and shearing interferometry.
The simplest method is the autocollimation technique, but it
only indicates collimation by comparing the size of the source
with its image. On the other hand the spacing of the fringes in
shearing interferometry is a direct measure of the degrée of
collimation.! Recently, Langenbeck derived a method that used

1980 APPLIED OPTICS / Vol. 10, No. 8 / August 1971
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two tiny corner-cube reflectors to sample the beam. In this
fashion he was able to translate the measurement from fringe
spacing to fringe rotation, with the result of increased sensitivity.*
The method presenied here is an application of the Talbot inter-
ferometer? and has the same limitations as the other interfero-
metric techniques. The main advantages of this technique are
the inexpensive components (two Ronchi rulings) and the relative
insensitivity to component alignment.

As Talbot observed in 1837, an image of a grating appears at
integral multiples of the distance 2d2/A (where d is the grating
period) when the grating is illuminated by a plane monochromatic
wave. A Ronchi ruling would therefore be imaged at 2d?/,
4d?/:, ete. If we place another identical Ronchi ruling in one
of these self-image planes (sec Fig. 1) moiré fringes will be formed,
as observed by J. Burch.t The fringe spacing P can be calcu-
lated by using the vector diagrams described by Rogers *to be

P = d/2 sin(6/2), 1)

where 8 is the angle with which the two gratings meet. As the
grating G2 is rotated around the optical axis, the fringe spacing
increases until we have uniform brightness (or darkness) when
grating bars of G and G2 are parallel to each other.

The plane wave that illuminates G1 of the interferometer is
obtained by placing a point source at the focus of a lens as shown
in Fig. 1. When this lens is defocused, the plane monochromatic
wave becomes spherical. Cowley and Moodie® have shown that
the positions of the self-image planes of a grating illuminated
by a spherical wave are given by

1/Z; + 1/Zw = 1/2JZ7, (2)

where J is a positive integer, 1/Zw is the curvature of the in-
cident wave at G1, Z is the location of the self-image as measured
from G1, and Zr is the distance 2d?/X. The self-image will be
magnified by a factor

M =4 2Z,;/Zw. (3)

This image, when superimposed with the second grating, again
produces moiré fringes. Now the grating G2 is rotated around
the optical axis until the grating bars of G1 and G2 are parallel
to each other. In this case, the Rogers vector diagram gives a
fringe spacing P = dids/|dy — d-,], where d; is the period of the
self-image, d» the period of the second grating, and d, = Md.
The fringe spacing in terms of the grating period d is therefore
P = Md/ |M — 1|. Thus the fringe spacing is a quantitative
measure of the degree of collimation, since IM — 1| is propor-
tional to the curvature 1/Zy-.

Now we want to discuss the accuracy obtainable, that is,
the smallest detectable deviation from perfect collimation. If
the collimation is perfect, the magnification M of the Talbot
image is 1, and hence the moiré period P is infinite. Thus our
task is to find how small the period P must become in order to be
detectable. Experience has shown that the presence of a moiré
effect is clearly visible if at least one-half of the moiré period P
falls within the limited field of observation with width B. Thus
one fringe will be detected whenever the number of lines between
grating G2 and the image of G1 differ by one-half. With
divergent illumination we count N lines of G2 in the observation
field of width B and N — 1 lines of the image of G1. Thus
the magnification M required for fringe detection is bounded by

M2>N/(N - %) =1+ 1/2N, 4)
and in convergent illumination,
M<N/N+ %) =1-1/2N. (5)

By combining Egs. (2) and (3) we have
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Fig. 1. Talbot interferometer setup for observing fringes due to
defocusing of collimator objective (Zy # f). Fringes are observed
on G2.
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Tig. 2. The self-imaging effect occurs within overlapping orders.
Test done at distance where the two first-order diffraction spots
begin to separate.

M = (1 el 2JZT/Zw)_‘l ~ 14 2JZT/ZW (6)

If M falls outside the bounds of Egs. (4) and (5), no fringes will
appear, limiting the sensitivity of this test. Solving Eq. (6)
with the bounds of Egs. (4) and (5), we find that the minimum
detectable field curvature 1/Zw is ]1/ZW| > (4NJZr7)™Y, where
the absolute signs obviate the necessity of assigning a sign
convention for field curvature. By substituting Eq. (2) into
the above equation we obtain, for N >> 1,

l1/Zw| 2 (2NZ)™ o

From Eq. (7) it follows that a large value of Zs is desired in
order to detect small collimation defects 1/Zw. The farthest
distance to which we can go is limited by the walkoff of the first
order grating diffraction. As indicated in Fig. 2, the longest
distance at which there is still a connected interference field of
width D is at Z; = Dd/2x. Perhaps one could perform collima-
tion tests up to about twice this distance, but we will restrict
ourselves to Z; < Dd/2x. Inserting this limit into Eq. (7),
together with N = D/d, we get

11/Zw| = 27/D2. 8)

The curvature of the wave incident on Gl is related to the
defocusing of the collimating objective by

(1/2Zw| = |f — Zi|/(Ze|f — Zi| + Zof) = |f — Zo|/Zof (9)

where Zo is the distance of the collimating objective from the
point source, Z¢ is the distance from objective to Gl1, and f
is focal length of the objective lens. The approximation is
permissible since the distance Z¢ < Zof/ If — Z,| in the test.
Call 5§ = | - Z.)I the focusing error, and substitute Eq. (8) into
Eq. (9). We have

8 = 2\Mf/D)?, (10




where we have used the fact Z, = f. Thus the focusing error
is simply related to the wavelength, and the square of the focal
length to beam diameter ratio.

The focusing error can be reduced by simply rotating one
grating with respect to the other, thereby producing moiré fringes
in the field of observation. In this fashion we change our de-
tection scheme from the condition of uniform brightness to a
system of rotating fringes. It is known that fringe detection
is more accurate than use of the uniform brightness condition.
We rotate both gratings in opposite directions by angles 8/2 with
the y axis. If both gratings have the same period, moiré fringes
will appear in the field of observation parallel to the z axis with
spacings given by Eq. (1). When the periods are unequal,
the fringe spacing is given by

P = dids/(di? 4+ d? — 2dyd; cos8)} = didy/|dy — o,

where the approximation is for small angular rotations of 6, and
dy,d; are the grating periods of Gl image and G2, respectively.
It can be shown by using the vector arguments of Rogers that
these fringes of unequal grating periods are rotated through an
angle ¢ with respect to the z axis, and the direction of this rotation
depends on whether the illumination is converging or diverging.
Thus the experimenter knows in which direction to move the
objectivelens. This rotation is related to the magnification M by
M = (cot8/2 + tane)/(cot8/2 — tang). Substituting this
equation into Eq. (3) we obtain

1/Zw = (1/Zs)[2 tane/(cot8/2 — tang)]. . (11)

minus first zeroth plus first order

o

Fig. 3. Moiré fringes which are rotated through angle ¢ because
of defocusing of collimator objective.
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Our ability to measure ¢ limits the sensitivity of this test. If
we say the minimum detectable fringe angle ¢ is about one-half
of a fringe (see Fig. 3), then Tiq. (11) reduces to |1/Zw| > 2x/D=

This lower bound is identical to that of the uniform brightness
condition [Eq. (8)]. In the laboratory one-quarter of a fringe
was easily discernible, producing results which were a factor of 2
better than predicted. If we want to achieve even higher ac-
curacy, we may use photodetectors instead of the eye. Assuming
19, brightness accuracy, we can detect fringes one hundred
times larger than the field of view. Hence the photoelectrical
approach would improve the detectibility of collimation errors
by a factor of about 50 over that which was predicted.

The visual experiments have confirmed our theoretical per-
formance predictions. An objective lens of 20 cm focal length
was used to produce a 5-cm beam. The light from a helium-
neon laser was focused with a 3.9-mm focal length lens onto a 6-u
pinhole. The position accuracy was 0.001 cm, whereas the
calculated accuracy was 0.002 cm. This improvement was due
to the fact that one-quarter fringe was used with the angular
measurement technique.

Last, one can improve the accuracy of the test by increasing
the distance Z;. This distance was limited by the walkoff as
shown in Fig. 2. By the addition of one or two mirrors placed
where the borderline rays of the zero-order diffraction propagate
(Fig. 3), the diffracted first-order beam can be reflected back
into the zero-order beam to create the shearing interferences.
This should increase Z; and the accuracy of the test manyfold.
However, this has not been verified experimentally.

The author is indebted to Adolf Lohmann for his support and
interest in this work and for his helpful suggestions in the prepara-
tion of this Letter. This work was performed under Air Force
contract AF-F19628-69-C-0268.
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Appendix 1

Source Size

A point source will give self—images of the grating in a region
where the diffracting orders interfere. As the size of the source
increases, the distance over which self-imaging occurs decreases until
images are no longer observed. The spatial coherence (size of the

source) is derived with the aid of Figure 27.

LENS

Figure 26. Diagram showing the angular size of the source. Source
points off-axis produce shifted Talbot images. Summing the contribu-
tions from all points on the extended source yields a self-image of G1
only if we do not allow the image to shift by more than say a quarter
of a period, a.

An off-axis point source will produce self-images that are
centered along the principal ray, that forms an angle o with the optical
axis, and at distances that are a multiple of 2a2/)\, where a is the
grating period and ) is the wavelength of the light source. The shift

s in the image is given by az. We have s = oz = 2Ma2/), where M is an

integer. Each off-axis point in an extended source contributes a
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shifted image to the observer. If the self-image of the grating is to
be observed, the contributing image from the furthest off-#xis point
must not be shifted by more than a quarter of a period, i.e. s = ZaMa?/k
< a/4, or a < A/8Ma.

The source size is related to a by o = Ax/2f, where Ax is the
size of the source and f is the focal leﬁgth of the collimating lens.
Therefore for a self-image to occur at some multiple M of the self-image

distance 2a®/), the size of the source must be limited by Ax < Af/4Ma.

Appendix 2

Approximations Leading to the Second Derivative

Our expression for spatially filtered fringes contains a summa-
tion of derivatives that resulted from a Taylor series expansion. In

this appendix we show that the lowest order term dominates the series,

i.e. -
Zuép)<x,y> 2Prpt P (x,y) 8272
p=2

if
PR L TP Y SR

where uép)(x,y) = oF uo(x,y)/axp, [uéz)(x,y)]max is the maximum value
that the function uéz)(x,y) obtains, A = z,)/d is the lateral shift and
n is a factor which controls the degree to which the approximation is

valid and is set to 1/10 for the remaining paragraphs. Rearranging this

equation we get

[u(()Z)(X,Y)]maX > o Gy | 4272 20/p1. (1)
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By the theorem of Berstein, the derivatives of a bandlimited
function uo(x,y) are bounded by the maximum value that the function
attains, i.e.

Py | P gl

(
|ug
where Av is the bandwidth of the function ug(x,y) in the Fourier domain

and [ug(x,y)] is the maximum value of this function. This theorem
0 max

implies that

WP | s Pl e,

or

(

Eq. (1) is the condition for [uoz)(x,y)]max under which our approximation

I REER I M YR C IO L

for the second derivative is valid. This maximum is bounded by the
lateral shift A which is under the control of the experimenter. The
bound of eq. (1) must be tighter (i.e. lower) than the above equation.
Therefore AP_Z 20/p! < (nAv)z—P, or A < (p!/20)l/(P_2)/ﬂAv.

The factorial dominates the root process as can be shown by

using Stirling's approximation for factorial
1 1
(p!/ZO)p_2 ~ (;/21r/20)P'_2 (p/e) for large p.

Therefore the smallest p (p = 4) is the tightest bound for A.
A < (V21/20) (4/e)/mhv = 6x/6

where 6x = 1/Av. This equation states that the shear must be less than
about one-sixth of the width of the object details in order that the
second derivative dominate the Taylor series. This estimate is a worst

case consideration. It is common practice in differential shearing
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‘interferometry to use a shift of a half resolution unit &x/2 instead of
6x/6 without noticeable detrimental effects. The reason for using some-

what larger shifts is improved detectability of soft slopes in the

object.

Appendix 3

Theoretical Consideration for First Order Filtering

By blocking one-half of our grating with an opaque screen our

grating transmission function G(r) is modified as follows:

§ : Gy e2w1mr/a’ ba<rsh O<psrt

G(r) = (m)

0 otherwise.

This in turn necessitates a reappraisal of our theoretical calculations.
Fortunately as we shall soon see our modified setup differs from the
theory by only a multiplicative constant that accounts for the reduced
intensity.

With our new limits the field beyond Gl is given by
©
1 1 +
u(r,Cp,z) ) ~ _—Z_'_ u(r sZ] )
0 JO

exp{in[r? + r'? - 2rr' cos(p - Q')]/Az} r'dr'e’,

where we recognize that
i 27
e-lxcose do = %_ e—lxcose 46.

0 0

Therefore the only difference in the computation of this equation from
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that of the unblocked grating equation is the factor 2. Thus we copy the

results obtained previously and divide by 2 to obtain

u(r,z) ~ %Z Cp V1 + (mrz/ra) ei“zl(m/a)2 ezﬂimr/a.
(m)

The remaining integrations are the same, so that behind the final

grating we have

(m) (n)
T+ mHalE ug(r - may/a,@).

This result differs from our theoretical result for full circular
gratings by only a constant factor. Thus blocking one-half of the
circular grating only reduces the overall intensity while allowing us to

separate out the first diffracted orders.

Appendix 4
Tolerances for Spatial Filtering a

Test Object with Multiple Focal Lengths

Consider a test object with focal lengths f; and f, corresponding
to test object areas O; and O, respectively. The diameter of 0; is by

and of O, is hy. The effective focal lengths are given by
f' = flfL/(fl + fL - D), £y = fsz/(fz + fL - D),

where fi is the focal length of lens L2 and D is the distance that L2 is

from the test object.

The diffracted orders therefore fall at distances f' and f" from

97




Figure 27(a). The tail end of the Talbot interferometric setup showing

how a bifocal lens causes the zeroth diffracted order to
meet in two different planes f' and f'".

Figure 27(b). An enlargement of the filtering region that lies between

f' and £f" in (a). The plane z = F is the optimum location
for separating out either the zeroth or first diffracted

orders. vy + 2x is the distance between the zeroth and
first orders.

Figure 27(c). An expansion of the triangular region in (b) which aids in

the computation of x.
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the principal plane of the combined system O and L2, The angles at
which the diffracted orders meet are a' and a". These quantities are
marked in Figgre 27(a). An expanded view of the area in which the
diffracted orders meet is drawn in Figure 27(b). We see that filtering
can be accomplished in plane F as long as the diffracted orders do not
overlap. This is equivalent to sgying that the distance marked y must
be greater than zero. In Figure 27(b) we have drawn the figure as though
the first diffracted order for 0; lay at the same distance from the
optical axis as 0y (i.e., Af'/a &~ Af"/a). This assumption is a conser-
vative one, since the distance y is slightly larger if we do not make
this assumption. To summarize, filtering is possible at plane z = F if
y = (Af'/a) - 2x > 0, or A\/a > 2x/f"'. |

The distance x is computed from a trigonometric consideration of
the oblique triangle containing x and a side of length Af. This triangle
is enlarged in Figure 27(c). From the law of sines we have a/Af =
sin(a"/2)/sin(a'/2 + o"/2), and the right triangle gives us x =
a sin(a'/2), where sin(a'/2) = tan(a'/2) = h;/2f' and sin(a"/2) =
tan(a"/2) = hy/2f". Therefore x & Af hihy/2(h;f" + hyf'). Our bound on
the diffraction angle is therefore A/a > Af hlhz/(f')z(hl + hy), where

we have assumed that f' =~ f". Some simplification will result if we let

Af/EY =

1

Hh| =

i _Db-fL 1 1y _ L1 _1

where M is the lateral magnification. Hence

Ma > (g -F) /ML +p)

and we conclude that the focal length of lens L, is immaterial for these

considerations.
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